研究生: |
林星佑 Lin, Hsing-Yu |
---|---|
論文名稱: |
利用磁珠分離技術開發純化胞外囊泡內所含miRNA之方法 Isolation of selected miRNAs in extracellular vesicles using two magnetic-bead-based enrichments |
指導教授: |
陳致真
Chen, Chih-Chen |
口試委員: |
許佳賢
Hsu, Chia-Hsien 賴品光 Lai, Pin-Guang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 胞外囊泡 、微型核醣核酸 、心血管疾病 、生物性指標 |
外文關鍵詞: | extracellular vesicles, microRNA, CVD, biomarker |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發使用磁珠於生物檢體中分離特定胞外囊泡,並萃取其所攜帶之微型核醣核酸的技術,以作為檢測疾病的生物性指標。首先使用接有CD63抗體的磁珠分離出特定胞外囊泡,將胞外囊泡膜打破後再使用接有和微型核醣核酸互補之序列的磁珠,萃取出特定微型核醣核酸,最後以即時定量聚合酶連鎖反應進行定量。由於磁珠能被磁力聚集在管壁上,可解決已往沉澱離心操作上廢液去除困難的缺點,同時磁珠的操控簡單,也易與微流道晶片結合,以開發快速簡便分離胞外囊泡所攜之微型核醣核酸技術。在此研究中選定帶有CD63胞外囊泡中的miR-21、miR-126以及miR-208a,以作為檢測心血管疾病的生物性指標。在這篇實驗中做了磁珠分步驟的效率以及效果驗證,同時也以血漿做測試得到初步結果。為了驗證CD63磁珠的性能,以奈米顆粒追蹤分析與生化分析儀的結果做比對得到差不多約70%的結果,同時也對混合時間做測試得到18小時最佳的結果;在微型核醣核酸磁珠上則將分離出的產物藉由定序來確認是否為miR-21、miR-126以及miR-208a,同時也以標準品做定量線繪製;再以血漿為樣本進行磁珠萃取,最終測量到1.3與14811 fM的miR-21和miR-126的初步結果;最後也在相關實驗晶片上做應用測試,在CD63磁珠的應用上晶片能得到和人為操作略微一致的結果。綜上所述,本篇研究已開發出能夠良好應用在微流體晶片上的胞外囊泡內微型核醣核酸分離方法並得到初步結果。
The method of isolateing plasma extracellular vesicles and extacting EV-contained microRNA has been investigated systematically, which performance is assessed by using real-time PCR quantififcation. Magnetic beads are utililzed for the development of a simple EV isolating technique that is amiable for microfluidic integration. Magnetic beads coated with CD63 antibodies are mixed with samples to isolate CD63+ EVs. EV-contained miR-21, miR-126 and miR-208a, as biomarkers for cardiovascular diseases, are extracted subsequently after mixing EV lysate with magnetic beads coated with complementary miRNA sequences. ~ 70% EVs are isolated from conditioned cell culture medium after 18 h of mixing with magnetic beads, which is assessed with a Bioanalyzer as well as nanoparticle tracking analysis. The specificity of microRNA-bead isolation is verified with sequencing results. Furthermore, calibration curves of RT-qPCR results have been established using synthesized microRNA molecules. Preliminary data indicate 1.3 and 14811 fM of miR-21 and miR-126 are present in healthy human plasma CD63+ EVs. Finally, an automated microfluidic device has shown comparable CD63+ EV isolation results. In summary, this research has demonstrated that the proposed method is capable of isolating EV-contained microRNA in human plasma samples and may potentially be implemented on microfluidic chips.
1. 104 年 v.s. 94 年十大死因排行. 2014; Available from: http://www.mohw.gov.tw/CHT/Ministry/Index.aspx.
2. Thery, C., et al., Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol, 2006. Chapter 3: p. Unit 3 22.
3. Cardiovascular diseases (CVDs).World Health Organization. 2015; Available from: http://www.who.int/mediacentre/factsheets/fs317/en/.
4. Myers, J. Which countries have the most deaths from heart disease? 2015; Available from: Which countries have the most deaths from heart disease?
5. Bay, M., et al., NT-proBNP: a new diagnostic screening tool to differentiate between patients with normal and reduced left ventricular systolic function. Heart, 2003. 89(2): p. 150-154.
6. De Ferranti, S. and N. Rifai, C-reactive protein and cardiovascular disease: a review of risk prediction and interventions. Clinica Chimica Acta, 2002. 317(1-2): p. 1-15.
7. Babuin, L. and A.S. Jaffe, Troponin: the biomarker of choice for the detection of cardiac injury. Canadian Medical Association Journal, 2005. 173(10): p. 1191-1202.
8. Kaptoge, S., et al., C-Reactive protein,fibrinogen, and cardiovascular disease prediction. New England Journal of Medicine, 2012. 367(14): p. 1310-1320.
9. Cooney, M.T., A.L. Dudina, and I.M. Graham, Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians. J Am Coll Cardiol, 2009. 54(14): p. 1209-27.
10. Bernal-Mizrachi, L., et al., Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. Int J Cardiol, 2004. 97(3): p. 439-46.
11. Bernal-Mizrachi, L., et al., High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J, 2003. 145(6): p. 962-70.
12. Berezin, A.E., et al., The predictive role of circulating microparticles in patients with chronic heart failure. BBA Clin, 2015. 3: p. 18-24.
13. Zen, K. and C.Y. Zhang, Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev, 2012. 32(2): p. 326-48.
14. Sayed, A.S., et al., Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases. Heart Lung Circ, 2014. 23(6): p. 503-10.
15. Wang, G.K., et al., Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J, 2010. 31(6): p. 659-66.
16. Mendis S, P.P., Norrving B., Global atlas on cardiovascular disease prevention and control. World Heal Organ, 2011.
17. Naghavi, M., et al., Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015. 385(9963): p. 117-171.
18. Mathers, C.D. and D. Loncar, Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med, 2006. 3(11): p. e442.
19. Tushuizen, M.E., et al., Cell-derived microparticles in the pathogenesis of cardiovascular disease: friend or foe? Arterioscler Thromb Vasc Biol, 2011. 31(1): p. 4-9.
20. Owens, A.P., 3rd and N. Mackman, Microparticles in hemostasis and thrombosis. Circ Res, 2011. 108(10): p. 1284-97.
21. Burnier, L., et al., Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost, 2009. 101(3): p. 439-51.
22. Boulanger, C.M., N. Amabile, and A. Tedgui, Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension, 2006. 48(2): p. 180-6.
23. Loyer, X., et al., Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res, 2014. 114(2): p. 345-53.
24. Diamant, M., et al., Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest, 2004. 34(6): p. 392-401.
25. Cervio, E., et al., Exosomes for intramyocardial intercellular communication. stem cells Int, 2015. 2015: p. 482171.
26. Amabile, N., et al., Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur Heart J, 2014. 35(42): p. 2972-9.
27. Fleury, A., M.C. Martinez, and S. Le Lay, Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol, 2014. 5: p. 370.
28. Koga, H., et al., Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol, 2005. 45(10): p. 1622-30.
29. Preston, R.A., et al., Effects of severe hypertension on endothelial and platelet microparticles. Hypertension, 2003. 41(2): p. 211-7.
30. Ueba, T., et al., Plasma level of platelet-derived microparticles is associated with coronary heart disease risk score in healthy men. J Atheroscler Thromb, 2010. 17(4): p. 342-9.
31. Bank, I.E.M., et al., The diagnostic and prognostic potential of plasma extracellular vesicles for cardiovascular disease. Expert Review of Molecular Diagnostics, 2015. 15(12): p. 1577-1588.
32. Mallat, Z., et al., Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation, 2000. 101(8): p. 841-3.
33. Matsumoto, N., et al., Increased level of oxidized LDL-dependent monocyte-derived microparticles in acute coronary syndrome. Thromb Haemost, 2004. 91(1): p. 146-54.
34. Morel, O., et al., Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction: role of endothelial damage and leukocyte activation. Atherosclerosis, 2009. 204(2): p. 636-41.
35. Hu, S.S., et al., Small-Size circulating endothelial microparticles in coronary artery disease. Plos One, 2014. 9(8).
36. Montoro-Garcia, S., et al., Small-size circulating microparticles in acute coronary syndromes: Relevance to fibrinolytic status, reparative markers and outcomes. Atherosclerosis, 2013. 227(2): p. 313-322.
37. Skeppholm, M., et al., Platelet-derived microparticles during and after acute coronary syndrome. Thromb Haemost, 2012. 107(6): p. 1122-9.
38. Chironi, G., et al., Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscler Thromb Vasc Biol, 2006. 26(12): p. 2775-80.
39. Jayachandran, M., et al., Characterization of blood borne microparticles as markers of premature coronary calcification in newly menopausal women. American Journal of Physiology-Heart and Circulatory Physiology, 2008. 295(3): p. H931-H938.
40. Jung, C., et al., Circulating endothelial and platelet derived microparticles reflect the size of myocardium at risk in patients with ST-elevation myocardial infarction. Atherosclerosis, 2012. 221(1): p. 226-31.
41. Simak, J., et al., Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J Thromb Haemost, 2006. 4(6): p. 1296-302.
42. Lee, Y.J., et al., Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res, 1993. 72(4): p. 295-304.
43. Van der Zee, P.M., et al., P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem, 2006. 52(4): p. 657-64.
44. Choudhury, A., et al., Elevated platelet microparticle levels in nonvalvular atrial fibrillation: relationship to p-selectin and antithrombotic therapy. Chest, 2007. 131(3): p. 809-815.
45. Chirinos, J.A., et al., Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J Am Coll Cardiol, 2005. 45(9): p. 1467-71.
46. Nozaki, T., et al., Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. J Am Coll Cardiol, 2009. 54(7): p. 601-8.
47. Wang, K., et al., Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res, 2010. 38(20): p. 7248-59.
48. De Hoog, V.C., et al., Serum extracellular vesicle protein levels are associated with acute coronary syndrome. Eur Heart J Acute Cardiovasc Care, 2013. 2(1): p. 53-60.
49. Kanhai, D.A., et al., Microvesicle protein levels are associated with increased risk for future vascular events and mortality in patients with clinically manifest vascular disease. Int J Cardiol, 2013. 168(3): p. 2358-63.
50. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54.
51. Lagos-Quintana, M., et al., Identification of novel genes coding for small expressed RNAs. Science, 2001. 294(5543): p. 853-8.
52. Lau, N.C., et al., An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001. 294(5543): p. 858-62.
53. Reinhart, B.J., et al., MicroRNAs in plants. Genes Dev, 2002. 16(13): p. 1616-26.
54. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
55. Ambros, V., et al., A uniform system for microRNA annotation. RNA, 2003. 9(3): p. 277-9.
56. Farh, K.K., et al., The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science, 2005. 310(5755): p. 1817-21.
57. Kozomara, A. and S. Griffiths-Jones, miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 2014. 42(D1): p. D68-D73.
58. Friedman, R.C., et al., Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 2009. 19(1): p. 92-105.
59. Bauersachs, J. and T. Thum, Biogenesis and regulation of cardiovascular microRNAs. Circ Res, 2011. 109(3): p. 334-47.
60. Brennecke, J., et al., Principles of microRNA-target recognition. PLoS Biol, 2005. 3(3): p. e85.
61. Chavali, S., et al., MicroRNAs act complementarily to regulate disease-related mRNA modules in human diseases. RNA, 2013. 19(11): p. 1552-62.
62. Mitchell, P.S., et al., Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(30): p. 10513-10518.
63. Arroyo, J.D., et al., Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A, 2011. 108(12): p. 5003-8.
64. Liu, Z., A. Sall, and D. Yang, MicroRNA: An emerging therapeutic target and intervention tool. Int J Mol Sci, 2008. 9(6): p. 978-99.
65. Rossbach, M., Small non-coding RNAs as novel therapeutics. Current Molecular Medicine, 2010. 10(4): p. 361-368.
66. Lwin, T., et al., A microenvironment-mediated c-Myc/miR-548m/HDAC6 amplification loop in non-Hodgkin B cell lymphomas. J Clin Invest, 2013. 123(11): p. 4612-26.
67. Shigoka, M., et al., Deregulation of miR-92a expression is implicated in hepatocellular carcinoma development. Pathol Int, 2010. 60(5): p. 351-7.
68. Kin, K., et al., Tissue- and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm. J Am Heart Assoc, 2012. 1(5): p. e000745.
69. Creemers, E.E., A.J. Tijsen, and Y.M. Pinto, Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res, 2012. 110(3): p. 483-95.
70. Fichtlscherer, S., et al., circulating microRNAs in patients with coronary artery disease. Circulation Research, 2010. 107(5): p. 677-U257.
71. Small, E.M., R.J.A. Frost, and E.N. Olson, MicroRNAs add a new dimension to cardiovascular disease. Circulation, 2010. 121(8): p. 1022-U66.
72. Corsten, M.F., et al., Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circulation-Cardiovascular Genetics, 2010. 3(6): p. 499-506.
73. Da Silva, A.M.G. and V.N. Silbiger, miRNAs as biomarkers of atrial fibrillation. Biomarkers, 2014. 19(8): p. 631-636.
74. Badrnya, S., R. Baumgartner, and A. Assinger, Smoking alters circulating plasma microvesicle pattern and microRNA signatures. Thromb Haemost, 2014. 112(1): p. 128-36.
75. Jansen, F., et al., MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc, 2014. 3(6): p. e001249.
76. Long, G.W., et al., Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. International Journal of Biological Sciences, 2012. 8(6): p. 811-818.
77. Exosome diagnostics announces data demonstrating exoIntelliScore™ prostate accurately predicted gleason score, pathologic stage and yumor volume in patients with prostate cancer. 2015; Available from: http://www.exosomedx.com/news-events/press-releases/exosome-diagnostics-announces-data-demonstrating-exointelliscoretm-prostate.
78. McKiernan, J., et al., A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. Jama Oncology, 2016. 2(7): p. 882-889.
79. Iorio, M.V., et al., MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 2005. 65(16): p. 7065-70.
80. Iorio, M.V., et al., MicroRNA signatures in human ovarian cancer. Cancer Res, 2007. 67(18): p. 8699-707.
81. Volinia, S., et al., A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 2006. 103(7): p. 2257-61.
82. Asangani, I.A., et al., MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 2008. 27(15): p. 2128-2136.
83. Meng, F.Y., et al., MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007. 133(2): p. 647-658.
84. Chan, J.A., A.M. Krichevsky, and K.S. Kosik, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 2005. 65(14): p. 6029-6033.
85. Hu, Y.X., et al., Prognostic significance of differentially expressed miRNAs in esophageal cancer. International Journal of Cancer, 2011. 128(1): p. 132-143.
86. Volinia, S., et al., A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(7): p. 2257-2261.
87. Tetzlaff, M.T., et al., Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocrine Pathology, 2007. 18(3): p. 163-173.
88. Thum, T., et al., MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008. 456(7224): p. 980-U83.
89. Roy, S., et al., MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovascular Research, 2009. 82(1): p. 21-29.
90. Fish, J.E., et al., miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell, 2008. 15(2): p. 272-84.
91. Van Rooij, E., et al., A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell, 2009. 17(5): p. 662-73.
92. Raitoharju, E., et al., miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis, 2011. 219(1): p. 211-7.
93. Huang, Y.H., et al., Thyroid hormone regulation of miR-21 enhances migration and invasion of hepatoma. Cancer Research, 2013. 73(8): p. 2505-2517.
94. Thum, T., et al., MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation, 2007. 116(3): p. 258-67.
95. Thum, T., et al., MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008. 456(7224): p. 980-4.
96. Adam, O., et al., Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol, 2012. 107(5): p. 278.
97. Olivieri, F., et al., Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol, 2013. 167(2): p. 531-6.
98. Ren, J.Y., et al., Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. Plos One, 2013. 8(12).
99. Hsu, A., et al., Systemic approach to identify serum microRNAs as potential biomarkers for acute myocardial infarction. Biomed Research International, 2014.
100. Fichtlscherer, S., et al., Circulating microRNAs in patients with coronary artery disease. Circ Res, 2010. 107(5): p. 677-84.
101. Zhang, Q., I. Kandic, and M.J. Kutryk, Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. Biochem Biophys Res Commun, 2011. 405(1): p. 42-6.
102. D'Alessandra, Y., et al., Diagnostic potential of plasmatic MicroRNA signatures in stable and unstable angina. PLoS One, 2013. 8(11): p. e80345.
103. Kontaraki, J.E., et al., MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. J Am Soc Hypertens, 2014. 8(6): p. 368-75.
104. Gidlof, O., et al., Cardiospecific microRNA plasma levels correlate with Troponin and cardiac function in patients with ST elevation Myocardial Infarction, Are Selectively Dependent on Renal Elimination, and Can Be Detected in Urine Samples. Cardiology, 2011. 118(4): p. 217-226.
105. Devaux, Y., et al., Use of circulating microRNAs to diagnose Acute Myocardial Infarction. Clinical Chemistry, 2012. 58(3): p. 559-567.
106. Hsiao, Y.H., et al., Continuous microfluidic assortment of interactive ligands (CMAIL). Scientific Reports, 2016. 6.
107. Akers, J.C., et al., MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS One, 2013. 8(10): p. e78115.
108. Akat, K.M., et al., Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc Natl Acad Sci U S A, 2014. 111(30): p. 11151-6.