研究生: |
范肇達 Chao-Ta Fan |
---|---|
論文名稱: |
磁旋返波振盪之穩定性與調變性研究 Stability and Tunability of a Gyrotron Backward-Wave Oscillator |
指導教授: |
張存續
Tsun Hsu Chang 朱國瑞 Kwo Ray Chu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 磁旋管 、穩定性 、調變性 、非線性行為 、磁旋返波振盪器 |
外文關鍵詞: | gyrotron, stability, tunability, nonlinear, gyro-BWO |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁旋返波振盪器是利用電子迴旋脈射機制(Electron cyclotron maser)而產生電磁波,因此具有高功率與寬頻的特性,在整個毫米及次毫米波源佔有相當重要的地位,然而它的發展卻受限於不穩定性的振盪。在這篇論文中,我們將就其基本物理特性,研究其線性與非線性的行為,探討其不穩定振盪的原因,並藉由其基本物理特性研究其調變性。
在線性操作區間,電子與電磁波能量間互相的吸吐形成了軸向模式;而在非線性操作時,軸向場會逐漸向上游集中,而形成場形收縮(field contraction),並利用時變計算程式瞭解其在作用長度較短時,可高效率穩定地操作於高電流,表現出磁旋返波振盪器的特性-寬頻寬的調變特性,並藉由此瞭解在作用長度較長時不穩定振盪的原因-自我調制(self-modulation)。而我們也成功地進行Ka頻帶的磁旋返波實驗,證明其在作用長度較短時(Lo=3.0 cm),輸出訊號可以穩定地的操作,最高效率也可達28%,然而當作用段長度為9公分時,其調變卻受到不穩定振盪的限制,無法有寬頻的操作,效率也僅僅約20%。而不穩定振盪的成因方面,我們在實驗上利用訊號時閘的技術,觀測到磁旋返波振盪器在作用長度較長時,由於電子與電磁波的能量供需不均而自我調制的情形,因此輸出的頻譜上形成在主要頻譜上有兩邊等距的旁帶訊號(sidebands),最後造成不穩定振盪。
The gyrotron backward-wave oscillator (gyro-BWO) base on electron cyclotron maser is a promising millimeter/submillimeter source for high power capability and broad band tunability. However, the development of the gyro-BWO is hampered by the nonstationary oscillation. We will discuss the stability and tunability form the fundamental physics characters and verify by the Ka band gyro-BWO experiment.
The beam-wave interaction forms the axial mode in the gyro-BWO. The number of regions of positive energy deposition rate determines the order of axial mode in the linear operating region. The field contracts to the beam entrance at the nonlinear operating region. The time-dependent particle-in-cell code is used to analyse the nonlinear behavior in the gyro-BWO. The results show the gyro-BWO exhibits the broad and stationary tunability at the shorter interaction length. And the self-modulation could be the reason forming the nonstationary oscillation in the gyro-BWO. We conducted the Ka band gyro-BWO experiment to verify the tunability at the shorter interaction length (3 cm) and analyse the stability at the longer interaction length (9 cm). The experimental results show that the gyro-BWO could broad and stationary operation at the 3 cm interaction length with maximum efficiency 28%, whereas the nonstationary oscillation hampered the tunability at the 9 cm length with 20% efficiency. The signal gating technique was used to analyse the spectra of the nonstationary oscillation. The uneven spatial distribution of the beam deposited energy causes the field energy to bounce back and forth within the feedback loop and modulates the oscillation amplitude and generates the equally spaced sidebands about a main peak in the output spectra.
1. P. Forman, Rev. Mod. Phys. 67, 397, 1995.
2. K.R. Chu, Rev. Mod. Phys. 76(2), 489, 2004.
3. A. V. Gaponov-Grekhov and V.L. Granatstein, Applications of High-Power Microwaves, Artech House, Boston.London, 1994.
4. V. L. Granatstein, B. Levush, B. G. Danly, and R. K. Parker, IEEE Trans. Plasma Sci. 25, 1322, 1997.
5. A.S. Gilmour Jr., Microwave Tubes, Artech House, Norwood, 1986.
6. J.W. Gewartowski and H.A. Watson, Principles of Electron Tubes, 1970.
7. S.H. Gold and G. S. Nusinovich, Rev. Sci. Instrum. 68, 3945, 1997.
8. V.L. Granatstein, G. S. Nusinovich, M. Blank, K. Felch, R. M. Gilgenbach, H. Guo, H. Jory, N. C. Luhmann, D. B. McDermott, J. M. Rogers, and T. A. Spencer, “Gyrotron oscillators and amplifiers,” in High-Power Microwave Sources and Technologies, edited by R. J. Barker and E. Schamiloglu, IEEE, New York, 156-198, 2001.
9. A. W. Fliflet, Int. J. Electron. 61, 1049 1986.
10. K. R. Chu and A.T. Lin, IEEE Trans. Plasma Sci. 16, 90,1988.
11. T. W. Stix, Waves in Plasmas, AIP, New York, 1992.
12. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, and T. T. Yang, Phys. Rev. Lett. 81,4760, 1998.
13. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang and Demostehenes J. Dialetis, IEEE Trans. Plasma Sci. 27, 1999.
14. G. P. Timms and G. F. Brand, Appl. Phys. Lett. 68, 2899, 1996.
15. T. Idehara, I, Ogawa, S. Mitsudo, M. Pereyaslavets, N. Nishida, and K. Yoshida, IEEE Trans. Plasma Sci. 27, 1999.
16. C. S. Kou, S. H. Chen, L. R. Barnett, H. Y. Chen, and K. R. Chu, Phys. Rev. Lett. 70, 924, 1993.
17. C. S. Kou, Phys. Plasmas, 1, 3093,1994.
18. M. A. Basten, W. C. Guss, K. E. Kreischer, R. J. Temkin, and M. Caplan, Int. J. Infr. Millimeter Waves, 16, 889, 1995.
19. A. K. Ganguly and S. Ahn, Int. J. Electronics, 67, 261, 1989.
20. T. A. Spencer, C. E. Davis, K. J. Hendricks, F. J. Agee and R. M. Gilgenbach, IEEE Trans. Plasma Sci. 4, 630, 1996.
21. C. S. Kou, C. H. Chen, and T. J. Wu, Phys. Rev. E. 57, 7162, 1998.
22. K. Ganguly and S. Ahn, Appl. Phys. Lett. 54, 514, 1989.
23. M. T. Walter, R. M. Gilgenbach, J. W. Luginsland, J. M. Hochman, J. I. Rintamaki, R. L. Jaynes, Y. Y. Lau, and T. A. Spencer, IEEE Trans. Plasma Sci. 24, 636, 1996.
24. A. T. Lin and C. C. Lin, Phys. Fluids B. 5, 2314, 1993.
25. G. S. Nusinovich, and O. Dumbrajs, IEEE Trans. Plasma Sci. 24, 620, 1996.
26. S. H. Chen, K. R. Chu, and T. H. Chang, Phys. Rev. Lett. 85, 2633, 2000.
27. G. S. Nusinovich, A. N. Vlasov, and T. M. Antonsen, Jr., Phys. Rev. Lett. 87, 218301, 2001.
28. T. H. Chang, S. H. Chen, L. R. Barnett and K. R. Chu, Phys. Rev. Lett. 87, 064802, 2001.
29. A. Grudiev and K. Schunemann, IEEE Trans. Plasma Sci. 30, 851, 2002.
30. S. H. Chen, T. H. Chang, K. F. Pao, C. T. Fan and K. R. Chu, Phys. Rev. Lett. 89, 268303, 2002.
31. J. M. Wachtel and E. J. Wachtel, Appl. Phys. Lett. 37, 1059, 1980.
32. S. Y. Park, V. L. Granatstein, and R. K. Parker, Int. J. Electronics, 57, 1109, 1984.
33. A. T. Lin, Phys. Rev. A. 46, 4516, 1992.
34. N. S. Ginzburg, G. S. Nusinovich, and N. A. Zavolsky, Int. J. Electron. 61, 881, 1986.
35. A. T. Lin, Z. H. Yang, and K. R. Chu, IEEE Trans. Plasma Sci. 16, 129, 1988.
36. K. R. Chu, M. Read, and A. K. Ganguly, IEEE Trans. Plasma Sci. 284, 620, 1980.
37. P. Sprangle and P. Smith, J. Applied Phys. 51, 3001, 1980.
38. S. Y. Parker, R. H. Kyser, C. M. Armstrong, R. K. Parker and V. L. Granatstein, IEEE Trans. Plasma Sci. 18, 321, 1990.
39. M.T. Walter, R.M. Gilgenbach, J.W. Luginsland, J.M. Hochman, J.I. Rintamaki, R.L. Jaynes, Y.Y. Lau and T.A. Spencer, IEEE Trans. Plasma Sci. 24, 636, 1996.
40. K.R. Chu, L.R. Barnett, H.Y. Chen, S.H. Chen, Ch. Wang, Y.S. Yeh, Y.C. Tsai, T.T. Yang, and T.Y. Dawn, Phys. Rev. Lett. 74, 1103, 1995.
41. L.R. Barnett, L.H. Chang, H.Y. Chen, K.R. Chu, W.K. Lau, and C.C. Tu, Phys. Rev. Lett. 63, 1062, 1989.
42. T.H. Chang, L. R. Barnett, K.R. Chu, F. Tai and C.L. Hsu, Rev. of Sci. Instruments, 70(2), 1530, 1999.
43. Edward L. Gizton, Microwave Measurements, New York, 1957.
44. A. H. McCurdy, C. M. Armstrong, W. M. Bollen, R. K. Parker, and V. L. Granatstein, Phys. Rev. Lett. 57, 2379, 1986.
45. A. A. Koronovskii and A. E. Khramov, Tech. Phys. Lett. 29, 510, 2003.
46. A. Grudiev and K. Schunemann, Phys. Rev. E. 68, 016501, 2003.
47. A. Grudiev, J. Jelonnek and K. Schunemann, Phys. Plasmas, 8, 2963, 2001.
48. A. E. Khramov, Tech. Phys. Lett. 29, 467, 2003.
49. A. E. Hramov, Tech. Phys. Lett. 30, 217, 2004.
50. A. A. Koronovskii, D. I. Trubetskov and A. E. Khramov, Tech. Phys. Lett. 48, 768, 2003.
51. A. Grudiev and K. Schunemann, IEEE Trans. Plasma Sci. 30, 851, 2002.
52. N. S. Ginzburg, N. I. Zaitsev, E. V. Ilyakov, Yu. V. Novozhilova, R. M. Rozenthal, and A. S. Sergeev, Phys. Rev. Lett. 89, 108304, 2002.
53. J. Rodegers, H. Guo, Victor. Granatstein, S. H. Chen, G. S. Nusinovich, M. Walter, and J. Zhao, IEEE Trans. Plasma Sci. 27, 427, 1999.
54. C. S. Kou, Phys. Plasma, 4, 4140, 1997.
55. A. H. McCurdy, Appl. Phys. Lett. 66, 1845, 1995.
56. A. W. Fliflet and W. M. Manheimer, Phys. Rev. A, 39, 3432, 1989.