簡易檢索 / 詳目顯示

研究生: 林立峰
Lin, Li-Feng
論文名稱: 探討 AlCoCrFeNi 共晶型高熵合金之微結構與機械性質
Study on microstructure and mechanical property of AlCoCrFeNi eutectic high-entropy alloys
指導教授: 蔡哲瑋
Tsai, Che-Wei
口試委員: 葉均蔚
Yeh, Jien-Wei
蔡銘洪
Tsai, Ming-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 155
中文關鍵詞: 高熵合金共晶合金微結構機械性質
外文關鍵詞: High-entropy alloys, Eutectic alloys, Microstructure, Mechanical property
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高熵合金由於多元添加的關係,在鑄造過程中易產生偏析,導致成份不均勻,影響其鑄造態之性質。為改善此缺點,文獻研發了共晶型高熵合金 AlCoCrFeNi2.1,將高熵合金結合共晶具備流動性佳與均勻性好的優點,在鑄造態即兼具強度與韌性。此外,透過降低合金製備熔點,更有助於降低製程之熱耗成本,也使得高熵合金發展更具潛力。
    本研究藉由相模擬預測及元素變量,發現藉由控制 Al、Cr、Fe 含量能抑制 spinodal decomposition 生成,進而於 AlCoCrFeNi 系統中開發新型共晶合金。本研究設計增加鐵之比例,以降低製造成本之共晶高熵合金,針對該成份進行微結構分析與相成份鑑定,透過 Al變量,探討共晶的初析對於機械性質上之影響。
    熱性質與制振性質為高熵合金較少被探討之領域,本研究在此進行初步研究。最後,針對本研究開發之成份與 AlCoCrFeNi2.1,比較各方面之性質,以利未來後續之研究。


    The compositional inhomogeneity in high-entropy alloys (HEAs) due to containing multiple elements usually results in segregation, which may worsen the mechanical properties of the casting alloys. In recent research, the eutectic high-entropy alloy (EHEA), AlCoCrFeNi2.1, was proposed to deal with the difficulty. By the advantages of eutectic structure, AlCoCrFeNi2.1 shows the great liquidity and castability. Most importantly, the as-cast EHEA displays the prime mechanical strength and ductility at the same time.
    In this research, elements modulation and the prediction by simulation software were used to discover a new kind of EHEA in AlCoCrFeNi system. By modifying the concentration of Al, Cr and Fe, we can suppress the existence of spinodal decomposition, and further create a new EHEA with high cost-efficiency by increasing the amount of Fe. The phase identification and microstructure evolution were studied in this research, as well as the mechanical properties. Moreover, the thermal and dynamic properties, which were rarely studied in HEAs, are also studied in this research. Finally, the new EHEA was thoroughly compared with the AlCoCrFeNi2.1 in many aspects, displaying the high potential of EHEAs for application.

    致謝 III 摘要 VII Abstract VIII 目錄 X 圖目錄 XIV 表目錄 XXII 壹、 前言 1 貳、 文獻回顧 3 2-1 共晶系統 3 2-2 高熵合金 5 2-2.1 高熵合金的定義 5 2-2.2 高熵合金的四大核心效應 6 2-2.3 AlCoCrFeNi 合金系統 13 2-3 共晶型高熵合金 17 2-3.1 AlCoCrFeNi2.1 微結構 19 2-3.2 AlCoCrFeNi2.1 機械性質 22 2-4 Spinodal decomposition 25 2-4.1 基本定義 25 2-4.2 高熵合金中之spinodal decomposition 28 2-5 制振材料之性質 31 2-5.1 材料之制振機制 32 2-5.2 阻尼性質表示種類 32 2-5.3 制振合金之阻尼機制 37 2-5.4 AlxCoCrFeNi 合金制振表現 42 參、 研究方法 46 3-1 實驗流程圖 46 3-2 實驗試片製備 47 3-2.1 合金原料配製與真空電弧熔煉 47 3-2.2 室溫冷滾軋加工 48 3-3 微結構與晶體繞射分析 49 3-3.1 X光繞射分析 (XRD) 49 3-3.2 掃描式電子顯微鏡 (SEM) 49 3-3.3 穿隧式電子顯微鏡 (TEM) 50 3-4 機械性質分析 51 3-4.1 硬度試驗 51 3-4.2 壓縮試驗 51 3-4.3 室溫拉伸試驗 51 3-5 其他性質分析 53 3-5.1 相模擬分析 (Thermo-Calc Software) 53 3-5.2 合金物性模擬 53 3-5.3 制振性質分析 (DMA) 55 3-5.4 熱性質分析 56 肆、 結果與討論 57 4-1 AlCoCrFeNi2.1 合金成份之變量討論 57 4-1.1 AlCoCrFeNi2.1 合金之熱模擬平衡相圖 57 4-1.2 不同元素變量對 AlCoCrFeNi2.1 成份之影響 59 4-2 AlCoCrFeNi 高熵合金系統之變量探討 70 4-2.1 合金設計與相模擬計算 72 4-2.2 雙相高熵合金之微結構與機械性質 76 4-2.3 spinodal decomposition 對共晶結構之影響 85 4-2.4 抑制 spinodal decomposition 之形成 90 4-3 共晶型高熵合晶之成份設計 95 4-3.1 鎳變量對共晶微結構與機械性質之影響 96 4-3.2 鋁變量對共晶微結構與機械性質之影響 103 4-3.3 共晶高熵合金相 TEM 微結構觀察 113 4-3.4 共晶型高熵合金之機械性質 116 4-4 共晶型高熵合金之其他性質研究 125 4-4.1 共晶高熵合金之熱性質分析 125 4-4.2 共晶高熵合金之制振性質分析 139 4-4.3 共晶高熵合金綜合比較 143 伍、 結論 149 陸、 本研究之貢獻 151 柒、 未來研究方向 151 捌、 參考文獻 152

    1. Yeh, J.W., et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
    2. Lu, Y., et al., A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep, 2014. 4: p. 6200.
    3. Lu, Y., et al., Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Materialia, 2017. 124: p. 143-150.
    4. Gaskell, D.R. and D.E. Laughlin, Introduction to the Thermodynamics of Materials. 2017: CRC Press.
    5. Best, B. Lessons for Cryonics from Metallurgy and Ceramics. Available from: http://www.benbest.com/cryonics/lessons.html.
    6. Jien-Wei, Y., Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 2006. 31(6): p. 633-648.
    7. Yeh, J.-W., et al., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A, 2004. 35(8): p. 2533-2536.
    8. Tong, C.-J., et al., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 2005. 36(4): p. 881-893.
    9. Ranganathan, S., Alloyed pleasures: multimetallic cocktails. Current science, 2003. 85(5): p. 1404-1406.
    10. Wang, Y.P., et al., Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A, 2008. 491(1-2): p. 154-158.
    11. Kao, Y.-F., et al., Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys. Journal of Alloys and Compounds, 2009. 488(1): p. 57-64.
    12. Jiang, L., et al., Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys. Journal of Alloys and Compounds, 2015. 649: p. 585-590.
    13. Jiang, L., et al., Microstructure and Mechanical Properties of a CoFeNi2V0.5Nb0.75 Eutectic High Entropy Alloy in As-cast and Heat-treated Conditions. Journal of Materials Science & Technology, 2016. 32(3): p. 245-250.
    14. Tan, Y., et al., Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy. Intermetallics, 2017. 85: p. 74-79.
    15. Jiang, H., et al., Microstructures and mechanical properties of Co 2 Mo x Ni 2 VW x eutectic high entropy alloys. Materials & Design, 2016. 109: p. 539-546.
    16. He, F., et al., Designing eutectic high entropy alloys of CoCrFeNiNb x. Journal of Alloys and Compounds, 2016. 656: p. 284-289.
    17. Ai, C., et al., Alloy design, micromechanical and macromechanical properties of CoCrFeNiTa x eutectic high entropy alloys. Journal of Alloys and Compounds, 2018. 735: p. 2653-2662.
    18. Lu, Y., et al., A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics, 2017. 91: p. 124-128.
    19. Ding, Z., Q. He, and Y. Yang, Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys. Science China Technological Sciences, 2017. 61(2): p. 159-167.
    20. Wani, I.S., et al., Ultrafine-Grained AlCoCrFeNi2.1Eutectic High-Entropy Alloy. Materials Research Letters, 2016. 4(3): p. 174-179.
    21. Wani, I.S., et al., Tailoring nanostructures and mechanical properties of AlCoCrFeNi 2.1 eutectic high entropy alloy using thermo-mechanical processing. Materials Science and Engineering: A, 2016. 675: p. 99-109.
    22. Balluffi, R.W., S. Allen, and W.C. Carter, Kinetics of materials. 2005: John Wiley & Sons.
    23. Santodonato, L.J., et al., Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun, 2015. 6: p. 5964.
    24. Wang, W.-R., et al., Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 2012. 26: p. 44-51.
    25. Sistla, H.R., J.W. Newkirk, and F. Frank Liou, Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2−x (x=0.3, 1) high entropy alloys. Materials & Design, 2015. 81: p. 113-121.
    26. 黃振賢, 修訂二版 機械材料. 新文京開發出版股份有限公司, 民國 92 年, 2003. 6: p. 233.
    27. Zhou, Z.C., F.S. Han, and Z.Y. Gao, The internal friction peaks correlated to the relaxation of Al atoms in Fe–Al alloys. Acta Materialia, 2004. 52(13): p. 4049-4054.
    28. Bonetti, E., et al., Structural and elastic behavior of Fe50Al50nanocrystalline alloys. Journal of Applied Physics, 1996. 79(10): p. 7537-7544.
    29. Golovin, I.S., et al., Anelasticity of Fe–Al alloys, revisited. Intermetallics, 2004. 12(2): p. 125-150.
    30. Ogata, K., System dynamics. Vol. 3. 1998: Prentice Hall New Jersey.
    31. Nowick, A.S., Anelastic relaxation in crystalline solids. Vol. 1. 2012: Elsevier. p.130.
    32. De Batist, R., Internal friction of structural defects in crystalline solids. Vol. 5. 1973: North-Holland.
    33. Paufler, P., Th. H. Courtney. Mechanical Behavior of Materials. McGraw‐Hill Publ. Co., Singapore 1990. 710 Seiten, DM 55.00. ISBN 0‐07‐100680‐X. Crystal Research and Technology, 1992. 27(4): p. p. 46.
    34. McClintock, F.A. and A.S. Argon, Mechanical behavior of materials. BOOKS, 1966: p. p. 471.
    35. Wolfenden, A. and J. Wolla, Metal Matrix Composites Mechanisms and Properties. eds. RK Everett & RJ Arsenault, Academic Press, Boston, 1991: p. 287.
    36. Rawal, S.P., et al., Damping Characteristics of Metal Matrix Composites. 1989, MARTIN MARIETTA SPACE SYSTEMS INC DENVER CO.
    37. Zener, C., Elasticity and anelasticity of metals. 1948: University of Chicago press.
    38. Blanter, M., et al., Internal friction in metallic materials, 90. 2007, Berlin Heidelberg: Springer.
    39. Koehler, J.S., Imperfections in nearly perfect crystals. 1952.
    40. Granato, A. and K. Lücke, Application of dislocation theory to internal friction phenomena at high frequencies. Journal of applied physics, 1956. 27(7): p. 789-805.
    41. Lazan, B.J., Damping of materials and members in structural mechanics. Vol. 42. 1968: Pergamon press Oxford.
    42. Kê, T.i.-S., Experimental evidence of the viscous behavior of grain boundaries in metals. Phys. Rev., 1947. 71: p. 533-546.
    43. Ma, S.G., et al., Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer. Journal of Alloys and Compounds, 2014. 604: p. 331-339.
    44. Girifalco, L.A., Vacancy concentration and diffusion in order-disorder alloys. Journal of Physics and Chemistry of Solids, 1964. 24: p. pp. 323-333.
    45. Phase-stability-in-high-entropy-alloys-Formation-of-solid-solution-phase-or-amorphous-phase.
    46. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element.
    47. Q800 Dynamic Mechanical Analyzer from TA Instruments. Available from: https://www.news-medical.net/Q800-Dynamic-Mechanical-Analyzer-from-TA-Instruments.
    48. MTDATA-Phase Diagram Software from the National Physical Laboratory.
    49. 吳展昇, FCC單相高熵合金微結構與機械性質之研究. 清華大學材料科學工程學系學位論文, 2017: p. 1-126.
    50. He, F., et al., Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Materials & Design, 2016. 104: p. 259-264.
    51. 鍾宜臻, Co-Ni-Fe-Cr-Mn (Al) 合金系列 X 光繞射強度, 硬度, 熱傳導及熱膨脹之研究. 清華大學材料科學工程學系學位論文, 2007: p. 1-105.
    52. Ho, C.Y. and R.E. Taylor, Thermal expansion of solids. Vol. 4. 1998: ASM international.

    QR CODE