簡易檢索 / 詳目顯示

研究生: 劉祺章
ChiChang Liu
論文名稱: 奈米尺度探討光子誘發磊晶鑽石膜熱發光現象
Nanometric Scale Studies of Thermoluminescence of CVD Diamond Film Induced By Photon
指導教授: 朱鐵吉博士
Dr. Tieh-Chi Chu
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 134
中文關鍵詞: 熱發光微觀蒙地卡羅靶理論鑽石膜
外文關鍵詞: Thermoluminescence, Microscopic Monte Carlo, Target theory, Diamond film
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑽石材質具有接近生物組織、化學性質穩定、導熱性好、密度高且不易損壞等特性,一直都是各方面應用的最佳材料,尤其是近年來隨著奈米科技的進步,碳原子的應用更是趨於多元化。利用鑽石作為輻射偵檢材料已發展多年,隨著製程技術提昇而能得到品質較為穩定的鑽石膜來進行探討。
    探討過程在理論上是由材料及輻射傳輸兩個角度切入,材料方面使用過去常應用在過渡元素模擬的強鍵模式進行缺陷特性的分析及探討,輻射傳輸則由單一事件蒙地卡羅模擬進行奈米尺度下的模擬。

    實驗上則依然採用傳統巨觀的模式進行,不同能量的光子照射鑽石膜並給予不同劑量,然後讀出熱發光的強度以得到其對於輻射的反應。由熱發光的特性配合強鍵模式的探討,嘗試以傳統的動力學模式來分析是否符合預期的結果。由分析結果顯示大部分的特性都是符合強鍵模式的預期結果,例如主輝光峰活化能的理論預估為0.9 eV實驗所得為0.89?0.13 eV、預估會受可見光影響產生易消光的輝光峰也在實驗中觀察到。不過由於兩者為不同缺陷位置,所以可見光對於主輝光峰並不會干擾。

    透過採用單一事件蒙地卡羅模擬及基於靶理論的雙隔室模式加以探討則可發現,這些特性主要是源自於微觀的機率性高比能所引起的飽和現象及多能階現象。單擊模式的微觀飽和因數約為1.94?10-6 Gy-1,高比能飽和因數為4?10-11 Gy-2,界隔比能大約為3?104 Gy。因此由本論文所建立的方法是可以用來探討熱發光的微觀特性。


    Polycrystalline diamond film that is made by chemical vapour deposition (CVD) method used as thermoluminscent dosimeter for radiation detection has received considerable attention. This crystal has the advantages of tissue equivalence, chemical stability and non-toxicity; these make it an attractive material in dosimetry.
    In this work, the predictions of theoretical thermoluminescent properties are determined by tigh-binding model and single-event track-structure Monte Carlo simulation. The former is based on quantum chemistry matrial science. The later is always used to calculate low energy x-ray transportation track and microdosimetric distribution.

    Although the experiments are based on macroscopic methods, the microscopic studies are needed to solve the disagreement between theoretical macroscopic results and experimenta data. The predicted value of activation energy by tight binding model is 0.9 eV while the experimental result is 0.89?0.13 eV. The thermoluminscent properties of vacancy defect with hydrogen binding that are predicted to be light sensitive but obvious fading. These are also found in experimental results. However, the relative efficiency for low energy x-ray and radiation damage does not agree with the theoretical prediction.

    A modified one-hit model is used to correct the differences. Based on the microscopic target model, some mechanistic insight into the physical aspect of radiation interaction with solid detectors can be obtained. This solid-state detector model shows that the response of radiation is similar to that of some biological system.

    第一章、緒論 1 1-1文獻回顧 2 1-2熱發光的原理 3 1-3研究目的與論文架構 11 第二章、鑽石膜鍵結組態 14 2-1鑽石晶格 14 2-2強鍵模式簡介 15 2-3 STATIC程式簡介 19 2-4 鑽石組態模擬 26 第三章、微觀的電子傳輸作用 33 3-1徑跡結構蒙地卡羅法 33 3-2低能電子與物質作用機制及截面 35 3-3微觀輻射劑量相關定義 42 3-4單擊模式 43 3-5程式架構及說明 46 第四章、實驗設備與方法 50 4-1鑽石膜與熱發光計讀儀 50 4-2輻射場 50 4-3輝光曲線分析方法 52 第五章、結果與討論 57 5-1缺陷模擬結果 57 5-2高能光子的輻射反應 63 5-3可見光的影響 73 第六章、結論 81 參考文獻 84

    宋健民, 2000,鑽石合成, 全華科技圖書股份有限公司, 台北市
    許彬杰,翁寶山,2002, 實用固體熱發光劑量測定術, 頁21-41 ,合記圖書出版社, 臺北市
    Adtani,M.M., Sawant,R.V., Shetty,B., Supe,J., 1982. "Light induced fading in CaSO4:Dy TEFLON thermoluminescence discs,” Radiat. Prot. Dosim. 2(2)119-121.
    AMDIS, http://dbshino.nifs.ac.jp
    Benabdesselam,M., Iacconi,P., Briand,D., Lapraz,D., Butler,J.E., 1999. "Selected thermoluminescent properties in CVD diamond film,” Radiat. Prot. Dosim. 84(1-4), 257-260.
    Benabdesselam,M., Iacconi,P., Briand,D., Butler,J.E., 2000a. "Performance of CVD diamond as a thermoluminescent dosemeter," Diamond and related Material 9,1013-1016
    Benabdesselam,M., Iacconi,P., Briand,D., Lapraz,D., Gheeraert,E. , Deneuville, D., 2000b. "Charactorisation by thermoluminescence of boron doped polycrystalline diamond films," Diamond and related Material 9,56-60
    Bizzarri,A., Bogani,F., Bruzzi,M., Sciortino,S., 1999. "Luminescence and conductivity studies on CVD diamond exposed to UV light,” Nucl. Instr. Meth. A 426,169-172.
    Bogani,F., Borchi,E., Bruzzi,M., Leroy,C., Sciortino,S., 1997. "A comparative study of the thermoluminescent response to beta irradiation of CVD diamond and LiF dosimeters,” Nucl. Inst. Meth. A 388,427-430.
    Briand,D., Iacconi,P., Benabdesselam,M., Lapraz,D., May,P.W., Rego,C.A., 2000. "Thermally stimulated properties of CVD diamond films,,” Diamond and Related Material 9, 1245-1248.
    Burkert, U. and N. L. Allinger, Molecular Mechanics, American Chemical Society: Washington, DC, 1982.
    Chen,R., Hornyak,W.F., Mathur,V.K., 1990. "Competition between excitation and bleaching of thermoluminescence,” J. Phys. D: Appl. Phys. 23,724-728.
    Chen, R., Leung, P.L., 2000. "A model for dose-rate dependence of thermoluminescence intensity,” J. Phys. D: Appl. Phys. 35,846-850.
    Cuttone, G., Azario6, L., Barone Tonghi, L., Borchi, E., Boscarino, D., Bruzziz, M., Buccioliniz, M., Cirrone, G.A.P., De Angelis, C., Della Mea, G., Fattibene, P., Gori, C., Guasti, A., Maggioni, S., Mazzocchi, S., Onori, S., Pacilio, M., Petetti, E., Piermattei, A., Pirollo, S., Quaranta, A., Raffaelet, L., V.Rigato, Rovcllit, A., Sabinim, M.G., Sciortino, S., Zatelli, G., 1999 " The CANDIDO project: development of a CVD diamond dosimeter for applications in radiotherapy," Nucl. Phys. B (Proc. Suppl.) 78,587-591.
    Cullen, D.E., Perkins, S.T., Seltzer, S.M., 1991 "Tables and graphs of electron interaction cross 10 ev to 100 gev derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1 - 100," Lawrence Livermore National Laboratory, UCRL-50400, Vol. 31., Livermore, California, USA
    Curie,M. 1961 Radioactive Substances (English translation of doctorial thesis, Faculty of science, Paris) Greenwood Press, Westpoint, USA
    Darvine,R.A.B., 1989 "Defect creation and two photon absorptionin armorphous SiO2" Phys. Rev. Letts. 62,340
    Davies,G, 1994 "Properties and growth of diamond" EM-009, IEE/INSPEC, London, UK.
    Evans, T.M., 1997 "The measurement and calculation of nanodosimetric energy distribution for electrons and photons," Ph. D. Thesis, NE/HP program, Georgia Institute of Technology, Neely Nuclear Research Center, Atlanta, USA
    Franklin,A. D., 1998. "A kinetic model of the rapidly bleaching peak in quartz thermoluminescence,” Radiat. Meas. 29(2), 209-211.
    Furetta,C., Kitis,G., Brambilla,A., Jany,C., Bergonzo,P., Foulon,F., 1999. "Thermoluminescence characteristics of a new production of chemical vapour deposition diamond,” Radiat. Prot. Dosim. 84(1-4), 201-205.
    Furetta,C., Kitis,G., Kuo,C.-H., 2000. "Kinetics parameters of CVD diamond by computerized glow-curve deconvolution (CGCD),” Nucl. Instr. Meth. B 160,65-72.
    Gillan, M.J. 1989 " Calculation of the vacancy formation energy in aluminium" J. Phys. Condensed matter 1, 689-711
    Horowitz, Y.S. 1984 "Thermoluminescence and thermoluminescent dosimetry" CRC press. Boca Raton, Florida.
    Horowitz,Y.S., Yossian, D., 1995 "Computerised glow curve deconvolution: application to thermoluminescence dosimetry",Nuclear Technology Publishing, Ashford, Kent, England.
    Horowitz, Y.S., Satinger, D., Oster, L., Issa, N., Brandan, M.E., Avila, O., Rodriguez-Villafuerte, M., Gamboa-deBuen, I., Buenfil, A.E., Ruiz-Trejo, C., 2001a "The extened track interaction model : superlinearity and saturation He-ion TL fluence response in sensitized TLD-100," Radiat. Meas. 33,459-473
    Horowitz, Y.S., Avila, O., Rodriguez-Villafuerte, M., 2001b "Theory of heavy charge particle response (efficiency and superlinearity) in TL materials" Nucl. Instr. And Meth. B 184,85-112
    Hubbell, J.H., Seltzer, S.M., 1997. “Tables of X-Ray mass attenuation coefficients and mass energy-absorption coefficients” (version 1.03), [Online]. Available: http://physics.nist.gov/xaamdi [2002, December 3]. National Institute of Standards and Technology, Gaithersburg, MD.
    ICRU report 36, 1983 Microdosimetry. International Commission on Radiation Units and Measurements, Betheda,MD.
    Ilie, A., Robertson, J., 2000 "Photoconductivity and photoluminescence processes in amorphous carbon" J. Noncrystal solids 266,793-796
    Izak-Brian,T., Moscovitch,M. ,1996. "Light-induced TL and light-induced fading in Alpha-Al2O3:C,” Radiat. Meas. 26(2), 259-264.
    Jain,V.K., 1984. "Photostimulated thermonluminescence," in Horowitz, Y.S. (eds.), "Thermoluminescence and thermoluminescent dosimetry,” Chap. 4 Vol. II, p.173. CRC press. Boca Raton, Florida.
    Klemic,G., 1997. "Thermoluminescence dosimetry," In Erickson,M.D., Directors, Chieco, N.E. (eds.), "The procedures manual of the environmental measurements laboratory,” HASL-300, DOE, http://www.eml.doe.gov/publications/procman/, 28th Edition, Sec. 3.5 .
    Maiwood, A. 1998 "CVD diamond particle detectors," Diamond and Related Material 7, 504-509
    Majborn, B., Botter-Jensen, L., Christensen, P., 1977 "On the relative efficiency of TL phosphers for high LET radiation", in Proc. 5th Int. Conf. Luminescence Dosimetry, Sao Paulo, Physikalisches Institute, Giessen, 124
    Mathews, J. 1992 " Numerical Methods for Mathematics, Science & Engineering", 2nd Ed., Prentice Hall publish, CA,USA.
    Mazzocchi, S., Bruzzi, M., Bucciolini, M., Cuttone, G., Pini, S., Sabini, M.G., Sciortino, S., 2002 "Thermoluminescence characterisation of chemical vapour deposited diamond film." Nucl. Instr. And Meth. A. 476,713-716
    McKeever, S.W.S, 1985. Thermoluminescence of solids, Cambridge University Press. Cambridge.
    Mckeever,S.W.S, Moscovitch, M.,Townsend, P.D., 1995 Thermoluminescence dosimetry materials: properties and uses, Nuclear Technology Publishing, Ashford, Kent, England.
    Mehl,M.J., Papaconstantopoulos,D.A., 1996 "Application of a tight-binding total-energy method for transition and noble metals: elastic constants, vacancies, and surfaces of monatomic metals" Phys. Rev. B,54(7)4519
    Mobit, P.N., Nahum, A.E., Mayles, P., 1997 "A Monte Carlo study of the quality dependence of diamond thermoluminescence dosimeters in radiotherapy beams," Phys. Med. Biol. 42,1913-1927
    Morris, M.F., McKeever,S.W.S., 1993. "Further developments of a model for describing the optical bleaching of thermoluminescence from quartz as applied to sediment dating,” Radiat. Prot. Dosim. 47, 637-641.
    Muford,J.W., Apatiga,L.M., Golzarri,J.I., Castano,V.M., 1998. "Stability of polycrystalline diamond films as UV thermoluminescence dosimeters,” Material Letters, 37,330-333.
    Musk, J.H., 1993. "Time-dependent and light-induced fading in Victoreen model 2600-80 Aluminium Oxide thermoluminescence dosemeters,” Radiat. Prot. Dosim. 47, 247-249.
    Newton, M.E, Campbell, B.A., Twitchen, D.J., Backer, J.M., Anthony, T.R., 2002 "Recombination-enhanced diffusion of self-interstitial atoms and vacancy-interstitial recombination in diamond" Diamond and Related Material 11,618-622
    Olko, P., Bilski, P., Ryba, E., Niewiadomski, T., 1993 "Microdosimetric interpretation of the anomalous photon energy response of ultra-sensitive LiF:Mg,Cu,P TL dosimeters." Radiat. Protect. Dosim. 47 (1-4),31-35
    Olko, P. 1998 "Calcium Fluoride, CaF2:Tm (TLD-300) as a thermoluminescence one hit detector, Radiat. Meas. 29(3-4),383-389
    Olko,P. 2002 "The microdosimetric one-hit detector model for calculating the response of solid state detectors," Radiat. Meas. 35,255-267
    Pagonis, V., Shannon, C., "An improved experimental procedure of separating a composite thermoluminescence glow curve into its components,” Radiat. Meas. 32 , 805-812.
    Pagonis, V., Mian, S., Kitis, G., 2001. "Fit of first order thermoluminescence glow peaks using the Weibull distribution function,” Radiat. Prot. Dosim. 93(1), 11-17.
    RD42 Collaboration, 1999a "Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC," Nucl. Instr. Meth. A 426, 173-180
    RD42 Collaboration, 1999b "Parameterisation of radiation effects on CVD diamond for proton irradiation," Nucl. Phys. B 78, 675-682
    RD42 Collaboration, 2000 "Pulse height distribution and radiation tolerance of CVD diamond detectors," Nucl. Instr. Meth. A 447, 244-250
    Sabini, M.G., Bucciolini, M., Cuttone, G., Guasti, A., Mazzocchi, S., Raffaele,L., 2002 "TLD-100 glow-curve deconvolution for the evaluation of the thermal stress and radiation damage effects," Nucl. Instr. Meth. A 476,779-784
    Schulte,R., Bashkirov, V., Shchemelinin, S., Garty, G., Chechik, R., Breskin, A., 2001 "Modeling of radiation action based on nanodosimetric event spectra", Physica Medica XVII suppl. 1,177
    Trajmar,S., Register,D.F., Chutjian, A., 1983 "Electron scattering by molecular II, experimental methods and data." Phys. Rep. 97/5,219-356
    Vittone,E., Manfredotti,C., Fizzotti,F., Lo Giudice,A., Polesello,P., Ralchenko,V., 1999. "Thermoluminescence in CVD diamond films: application to radiation dosimetry,” Diamond and Related Materials 8,1234-1239.
    Watanabe, S., 1951 Phys. Rev. 83,785
    Zeigler,J.F., 1985 The Stopping and Range of Ions in Solids, Wheaton, Exeter, 1985.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE