簡易檢索 / 詳目顯示

研究生: 簡源進
Yuan-Chin Chien
論文名稱: 氧化鋯被覆與不同304不□鋼氧化膜對於溶氫與溶氧在模擬沸水式反應器環境中的電化學特性影響研究
Electrochemical Characteristics of Oxygen and Hydrogen on ZrO2 Treated Type 304 Stainless Steels with Different Surface Oxide Structures in Simulated Boiling Water Reactor Environments
指導教授: 蔡春鴻
Chuen-Horng Tsai
葉宗洸
Tsung-Kuang Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 84
中文關鍵詞: 沸水式反應器沿晶應力腐蝕龜裂氧化鋯抑制性被覆極化掃瞄
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核電廠沸水式反應器( Boiling Water Reactor, BWRs )在長時間運轉下組件材料容易發生沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)的問題。電化學腐蝕電位(electrochemical corrosion potential, ECP)為評估304不□鋼組件在288 ℃純水環境中是否發生沿晶應力腐蝕龜裂的重要指標。在1980年代,核能工業多採用加氫水化學(Hydrogen Water Chemistry, HWC)技術,降低材料的電化學腐蝕電位,減緩沿晶應力腐蝕龜裂的發生,但HWC技術在較高的飼水注氫量下(高於0.6ppm),會伴隨管路輻射劑量增加的副作用。
    為了減少HWC伴隨的副作用,本研究利用抑制性被覆防蝕技術,針對304不□鋼以100 nm氧化鋯(ZrO2)進行被覆處理,在90 °C與150 °C兩種溫度條件下採用動態循環的熱水沉積法(hydrothermal deposition)維持7天,再置入模擬BWR高溫純水環境中進行動態電位極化掃瞄及ECP監測。試片在被覆前先經由敏化熱處理,並分別在300 ppb溶氧及50 ppb溶氫288 °C純水環境中預長氧化膜。研究中以SEM、EDX對試片覆膜前後進行表面成分分析,並由拉曼能譜辨別hematite (□-Fe2O3)及magnetite (Fe3O4)氧化膜結構。
    本研究主要目的為研究比較304不□鋼不同氧化膜表面氧化鋯被覆的防蝕效益,模擬BWR爐心中因輻射水解產生溶氧與溶氫的高溫純水環境,在兩種氧化還原劑濃度變化下進行極化掃瞄及ECP監測,以了解氧化鋯被覆在不同氧化膜結構的腐蝕特性差異。由SEM影像觀察,溶氧環境中形成的氧化物分佈緻密,且顆粒大小平均;溶氫環境中形成的氧化物分佈稀疏,且顆粒大小不均。經氧化鋯被覆試片的SEM影像中,氧化鋯可被覆在兩種不同氧化結構上,但是以在□-Fe2O3結構上90 °C時被覆條件效果最佳。極化曲線結果顯示經氧化鋯被覆處理試片,在腐蝕電流密度、腐蝕電位及交換電流密度皆小於未被覆處理的試片,以90 °C條件被覆在□-Fe2O3結構上試片,腐蝕電流密度可降低二分之一,而交換電流密度在不同溶氧濃度中可降低達10~30倍最佳。另外,被覆試片經過10天浸泡在288 °C含溶氧純水環境中,測試前後的ECP及SEM影像並無明顯改變,仍維持良好的被覆防蝕效果;經過10天浸泡在溶氫環境後,SEM影像中觀察到,部分區域在沒有氧化鋯被覆下,會有金屬氧化物溶解現象。整體而言,實驗結果驗證了氧化鋯被覆可以有效降低304不□鋼在BWR環境的腐蝕速率。


    Incidents of intergranular stress corrosion cracking (IGSCC) have been readily observed in boiling water reactors (BWRs) for many years. The electrochemical corrosion potential (ECP) is a major indicator for IGSCC susceptibility of stainless steel components in 288 °C pure water. In the early 1980s, the technology of hydrogen water chemistry (HWC) was developed to mitigate the IGSCC problems in BWRs. However, HWC has side effects of exposing operators to elevated level of radiation and high hydrogen cost. To reduce these side effects, a novel technique of zirconium oxide (ZrO2) coating that eventually requires no hydrogen addition has been proposed.
    In this study, electrochemical polarization analyses and ECP response monitoring were conducted to investigate the impact on ZrO2 treated specimens in simulated BWR environments. Prior to the electrochemical tests all specimens were thermally sensitized and pre-oxidized in high temperature water containing either 300 ppb O2 or 50 ppb H2. Afterwards, the specimens were treated with 100 nm ZrO2 by hydrothermal deposition at 90 °C and 150 °C for one week. The morphologies of the specimens were examined by scanning electron microscopy and energy dispersive X-ray spectroscopy. The hematite (α-Fe2O3) and magnetite (Fe3O4) structures of oxides were identified by Raman spectrum.
    The objective of this study was to evaluate the effectiveness of ZrO2 treatment on specimens with different oxide structures. Differences between the sizes and the packing densities of the oxide particles produced from different water chemistry condition could be clearly observed on the SEM images. Based on observation, the coating density of ZrO2 on the oxides with a hematite structure was greater than on those with a magnetite structure. From the electrochemical potentiodynamic polarization results, we observed lower electrochemical corrosion potentials, corrosion current densities, and exchange current densities on the treated specimens than on the untreated ones in high temperature water with either dissolved oxygen or dissolved hydrogen only. Furthermore, the ECPs and surface morphologies of the ZrO2 treated specimens showed almost no changes after ten days of immersion in 288 °C water. The overall results indicated that the ZrO2 treatment could effectively reduce the corrosion rate of Type 304 stainless steel in simulated BWR environments.

    摘要……… I Abstract. II 謝辭…… III 目錄…… IV 圖目錄.. VI 表目錄… IX 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 2 1.3 論文結構 2 第二章 文獻回顧 3 2.1 應力腐蝕龜裂原因及防制 3 2.1.1 張應力 3 2.1.2 材料熱敏化 3 2.1.3 高溫氧化水環境 4 2.2 高溫形成氧化膜特性 6 2.2.1 氧化膜結構 6 2.2.2 表面氧化層結構成長機制 8 2.2.2 拉曼散射光譜分析 12 2.3 電化學腐蝕電位與應力腐蝕龜裂關係 13 2.4 加氫水化學(HWC)與貴重金屬添加(NMCA)特性 15 2.4.1 加氫水化學 15 2.4.2 貴重金屬添加 16 2.5 抑制性被覆(IPC)特性 18 2.5.1 相關研究報告 18 2.5.2 覆膜機制 21 2.6 混合電位理論 23 2.6.1 混合電位模式 (Mixed Potential Model, MPM) 23 2.6.2 伊凡司圖 (Evan’s Diagram) 24 第三章 研究方法 27 3.1 試片準備 28 3.2 敏化程度測試 28 3.3 預長氧化膜 29 3.4 抑制性被覆 29 3.5 表面分析 30 3.6 模擬BWR水循環系統 30 3.7 高溫電化學分析 31 3.7.1 電化學腐蝕電位(ECP)監測 32 3.7.2 動態電位極化掃瞄 33 3.8 常溫電化學阻抗分析 34 第四章 實驗結果 35 4.1敏化測試 35 4.2 預長氧化膜結果分析 36 4.2.1 掃瞄式電子顯微鏡 (SEM) 36 4.2.2 歐傑電子能譜 (AES) 40 4.2.3 電子化學能譜 (ECSA) 41 4.3 IPC試片表面分析 44 4.3.1 掃瞄式電子顯微鏡 (SEM) 44 4.3.2 感應耦合電漿質譜分析 (ICP-MS) 55 4.3.3 拉曼光譜 (Raman spectrum) 56 4.4高溫電化學分析―電化學腐蝕電位(ECP)監測 58 4.4.1 溶氧環境ECP監測 59 4.4.2 溶氫環境ECP監測 61 4.5 高溫電化學分析―動態電位極化掃瞄 63 4.5.1 不同溶氧濃度極化曲線 63 4.5.2 極低溶氧濃度極化曲線 70 4.5.3 不同溶氫濃度極化曲線 71 4.6 常溫電化學阻抗分析 76 第五章 結論 78 參考文獻 79 附錄A 縮寫名詞(Abbreviation) 83 附錄B 著作資料 84

    [1] Fredric A. Simonen, Stephen R. Gosselin, “Life Prediction and Monitoring of Nuclear Power Plant Components for Service-Related Degradation” Journal of Pressure Vessel Technology, February 2001, Volume 123, Issue 1, pp. 58-64
    [2] M. Shindo et al, Department of Materials Science and Engineering, Japan Atomic Energy Research Institute, “Effect of minor elements on irradiation assisted stress corrosion cracking of model austenitic stainless steels,” Journal of Nuclear Materials 233-237(1996)1393-1396.
    [3] M.A.Al-Anezi, G.S.Frankel and A.K. Agrawal, ”Susceptibility of Conventional Pressure Vessel Steel to Hydrogen-Induced Cracking and Stress-Oriented Hydrogen-Induced Cracking in Hydrogen Sulfide-Containing Diglycolamine Solutions,” Corrosion Vol.55 No.11 pp.1101-1109.
    [4] R. L. Cowan, Nuclear Engineering International, January 1986, p. 26.
    [5] M. E. Indig, "Recent Advances in Measuring ECPs in BWR Systems," Proc. 4th Intl. Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, NACE, Jekyll Island, GA., Aug. 6-10, 1989, p. 4-411.
    [6] R. L. Cowan et al, GE Nuclear Energy, Vallecitos Nuclear Center, “Effects of hydrogen water chemistry on radiation field buildup in BWRs,” Nuclear Engineering and Design 166(1996)31-36.
    [7] U. S. Nuclear Regulatory Commission, Cracking of Vertical Welds in the Core Shroud and Degraded Repair, NRC Information Notice 97-17, April 4, 1997.
    [8] Y. J. Kim, L. W. Niedrach, M. E. Indig, and P. L. Andresen, Journal of Metals, Vol. 44, No. 2, p. 14 (1992).
    [9] S. Hettiarachchi, R.J. Law, T.P. DiaZ, R.L. Cowan, “The First In-Plant Demonstration of Noble Metal Chemical Addition Technology for IGSCC Mitigation of BWR Internal,” 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, August 1014, p.535(1997)
    [10] Peter L. Andresen and Tom Angeliu, GE Corp. Research and Development Center, “The Effect of In-situ noble metal chemical addition on crack growth rate behavior of structural materials in 288℃ water,” Corrosion96, The NACE International Annual Conference and Exposition, Paper No.84.
    [11] L. W. Niedrach, “Effect of Palladium Coatings on the Corrosion Potential of Stainless Steel in High-Temperature Water Containing Dissolved Hydrogen and Oxygen,” Corrosion-March 1991, pp.162-169
    [12] Y. J. Kim and P. L. Andresen, "Application of Insulated Protective Coatings for Reduction of Corrosion Potential in High Temperature Water," Corrosion 96, NACE, Denver, Colorado, Mar. 24-29, 1996, Paper Number 105.
    [13] T. K. Yeh et al., □ Intergranular Stress Corrosion Cracking of Type 304 Stainless Steels Treated with Inhibitive Chemical in Simulated Boiling Water Reactor Environments,□ Journal of Nuclear Science and Technology, v. 39, p. 531-539 (2002).
    [14] Materials Science and Engineering-An Introduction, 5th Edition W.D. Callister, Jr., John Wiley Sons, Inc., 1999
    [15] P.L. Andresen, F.P. Ford, “Life Prediction by mechanistic Modeling and System Monitoring of Environmental Cracking of Iron Alloys in Aqueous Systems”, Materials Science and Engineering, A103, p.167, 1988.
    [16] Kazushige ISHIDA et al., “Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors, (I) Temperature Dependence of Hydrazine Reactions”, Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 43, No. 1, p. 65–76 (2006)
    [17] Asakura, Y. et al. Corrosion NACE, 1989, 45, 119-124.
    [18] Winkler, R. and Lehmann, H. VGB Kraftwerkstechnik, 1985, 65,421426.
    [19] Lister, D.H., Davidson, R.D. and McAlpine, E. Corros. Sci., 1987, 27, 113-140.
    [20] Y.J. Kim, “Analysis of Oxide Film Formed on Type 304 Stainless Steel in 288°C Water Containing Oxygen, Hydrogen, and Hydrogen Peroxide”, Corrosion Vol. 55, No.1, January 1999.
    [21] Young-Jin Kim, “Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288°C Water” International Water Chemistry Conference, San Francisco, October 2004
    [22] B. Stellwag, Corrosion Science, Vol.40, No.3, p.337-370, 1998
    [23] Pick, M.E. and Segal, M.G. Nucl. Eng., 1983,22,433-444.
    [24] Leistikow, S. and Kraft, R. Werkstofjre und Korrosion, 1974,25, 12-25.
    [25] Robertson, Corrosion Science, Vol.32, No.4, p.443-465, 1991
    [26] Winkler, R., Htittner, F. and Michel, F. VGB Kraftwerkstechnik, 1989, 69, 527-531.
    [27] Y.F. Cheng, F.R. Steward, “Corrosion of carbon steels in high-temperature water studied by electrochemical techniques”, Corrosion Science 46 (2004) 2405–2420
    [28] C.S. Kumai and T.M. Devine, “Oxidation of Iron in 288°C, Oxygen-Containing Water”, Corrosion Vol. 61, No. 3, 2005
    [29] D.F. Taylor, Corrosion 35 (1979): p. 550.
    [30] Kazushige ISHIDA, et al., J. Nucl. Sci. Technol., 42, No. 9, p.799-808 (2005)
    [31] S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of SS in High Temperature Water”, Water Chemistry of Nuclear Reactor Systems, Oct. (2004)
    [32] M.E. Indig, G.M. Gordon, R.B. Davis, “Mitigation of Stress Corrosion Cracking Through Suppression of Radilytic Oxygen,” Proc. 1st Int. Symp Environmental Degradation of Materials —Water Reactors (Houston, TX: NACE, 1983), p. 506.
    [33] D. D. Macdonald, "Passivity–the key to our metals-based civilization," Pure Appl. Chem., Vol. 71, No. 6, pp. 951-978, 1999.
    [34] D. D. Macdonald et al., "Theoretical Estimation of Crack Growth Rates in Type 304 Stainless Steel in BWR Coolant Environments," Corrosion, Vol. 52, p. 768-785 (1996).
    [35] R.L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry”, Nuclear Energy, 36, No.4, p.257, 1997.
    [36] Y. J. Kim and P. L. Andresen, "Effect of Noble Metal Addition on Electrochemical Polarization Behavior of Hydrogen Oxidation and Oxygen Reduction on Type 304 Stainless Steel in High-Temperature Water," CORROSION–MAY 1999, Vol. 55, No. 5, p.456-461
    [37] Y. J. Kim and P. L. Andresen, "Catalytic Response and Electrode Kinetics on Noble Metal-Treated Type 304 Stainless Steel in 288 oC Water," CORROSION–DECEMBER 2000, Vol. 56, No. 12, p.1242-1249
    [38] R. Pathania, Zirconium Oxide Deposition to Mitigate IGSCC, BWRVIP Mitigation Committee Meeting, Atlanta, GA, October 1-3, 1997, EPRI.
    [39] Dibyendu Ganguli and Debtosh Kundu, Central Glass and Ceramic Research Institute, India, “Preparation of amorphous ZrO2 coatings form metal-organic solutions,” Journal of Materials Science Letters, 3(1984)503-504.
    [40] Y. J. Kim and P. L. Andresen, "Application of Insulated Protective Coatings for Reduction of Corrosion Potential in High Temperature Water," CORROSION/96, NACE, Denver, Colorado, Mar. 24-29, 1996, Paper Number 105.
    [41] X. Zhou, I. Balachov and D. D. Macdonald, ”The Effect of Dielectric Coatings on IGSCC in Sensitized Type 304 SS in High Temperature Dilute Sodium Sulfate Solution, ”Corrosion Science. Vol.40 No.8 pp. 1349-1362.
    [42] T. K. Yeh, et al., J. Nucl. Sci. Technol., 39, No. 5, p.531-539 (2002).
    [43] T. K. Yeh, et al., J. Nucl. Sci. Technol., 42, No. 9, p.809-815 (2005)
    [44] R. Pathania, Evaluation of ZrO2 Coatings to Mitigate IGSCC, BWRVIP Mitigation Committee Meeting, Lake Buena Vista, FL, December 1-2, 1999, EPRI.
    [45] B. Stellwag and R. Kilian, “Investigation into Alternatives to Hydrogen Water Chemistry in BWR Plants,” 3rd Workshop on LWR Coolant Water Radiolysis and Electrochemistry. Winfrith Technology Centre, Dorset, UK, 27 October 2000
    [46] P. Jayaweeraa, S. Hettiarachchi,“Determination of the high temperature zeta potential and pH of zero charge of some transition metal oxides”Colloids trnd Swfaces A: Physicochemical and Engineering Aspects, 85 (1994) 19-27
    [47] D. D. Macdonald, "Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors," Corrosion, Vol. 48, No. 3 p.194-205 (1992).
    [48] W.L.Clarke, R. L. Cowan, W. L. Walker, “ Comparative Method for Measuring Degree of Sensitization in Stainless steel,” Intergranular Corrosion of Stainless Alloys, ASTM STP656, (1978)
    [49] R. Katsura et al., “DL-EPR Study of Neutron Irradiation in Type 304 Stainless Steel,” Corrosion, Vol.48, No.5, (1992)
    [50] 簡源進、葉宗洸、蔡春鴻〝不同前處理條件之氧化鋯被覆304不□鋼在模擬沸水式反應器環境中的電化學行為研究〞防蝕工程,第二十卷第二期,第181∼198頁,2006年6月
    [51] H. H. Uhlig, R. W. REVIE, “Corrosion and Corrosion Control”, John Wiley & Sons, New York, 1984.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE