簡易檢索 / 詳目顯示

研究生: 莫堯安
Yao-An Mo
論文名稱: 各種催化劑對奈米碳管成長機制及動力學之研究
The effect of catalysts(iron, cobalt and nickel) on the mechanism and kinetics of carbon nanotube growth by thermal CVD method.
指導教授: 蔡春鴻 教授
Dr.Chuen-Horng Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 111
中文關鍵詞: 奈米碳管成長機制成長動力學催化劑
外文關鍵詞: carbon nanotube, mechanism, kinetics, thermal CVD method
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •    雖然多層奈米碳管已經被人們發現超過十年了,但是其成長的機制和動力學也大多是由電腦模擬、理論推導及成長結束後的穿透式電子顯微鏡(TEM)影像來預測,拜定點即時電子顯微鏡in-situ TEM的技術之賜,可以對奈米碳管成長有更多的了解,但是顯微鏡所無法察覺的部分仍是缺憾,有些學者開始利用成長動力學來推測成長碳管時的成長速率限制步驟(rate controlling limiting),在第一章以舉出許多先進所得到的結果,但是沒有發現提出有實驗為基礎適用於各催化劑探討奈米碳管由成核到去活化的成長機制及動力學研究,因此,基於這個理由,利用三種催化劑在相同成長參數、製程下,不同的溫度成長奈米碳管,作出隨成長時間的增加奈米碳管長度的變化,利用掃描式電子顯微鏡量得不同時間和催化劑所成長的奈米碳長度,製作出成長曲線,利用這個曲線的趨勢、或是配合動力學的數學模式,將可能的動力學和機制釐清;在此之前,必須找到各催化劑的製成窗口(可以成長出奈米碳管的參數範圍),才能訂定成長曲線所使用的製程參數,所以我將這個工作做完整一些,作成資料庫的形式,使得日後要是使用同一套成長機台的人有參考依據,也經由這個步驟,能更為了解催化劑在成長碳管所扮演的角色。


    The kinetics of multi-walled carbon nanotubes (MWCNTs) growth reported so far were mostly based on simulation or deriving the activation energy of one kind of catalyst assuming steady growth. Whether the growth mechanism of MWCNT growth on different catalyst metals can fall into the same mechanism, and whether the nucleation and growth kinetics share the same kinetic controlling mechanism need to be clarified. In this study, we synthesized MWCNTs over different catalysts (iron, cobalt and nickel) deposited by e-gun evaporation and measured the length of MWCNTs varying with time. It was found that there consisted three stages of MWCNTs formation: (1) Nucleation stage by observing the shape transformation of catalyst particles in the initial stage and also by extrapolating the change of length with time to derive the nucleation period. (2) Steady growth stage from which the activation energy of the controlling step could be derived by Arrhenius plot. (3) Growth saturation period, which was caused by amorphous carbon formation. After intensive observations of the relation between the sizes and shapes of the catalyst nanoparticles and the growth rates of MWCNTs at different temperatures over different catalyst metals, it was concluded that the catalyst shape transformation at nucleation stage was important for the growth on nickel and cobalt, but not on iron. As to the steady growth rate, it was found that MWCNTs growth followed the same growth mechanism in all temperature range for iron and cobalt, whereas for nickel there observed a transition of growth mechanism at temperature of ~840oC. There were also observed different growth saturation behaviors on different catalyst metals, which will be discussed in this paper as well.

    第一章  緒論............................................1 1-1奈米碳管的合成.....................................1 1-2奈米碳管的可能成長機制.............................8 1-3奈米碳管的成長動力學..............................16 1-4催化劑對奈米碳管的成長的影響......................21 1-5尺寸效應對材料熔點下降的影響......................27 參考文獻.................................................38 第二章  研究目的及方法.................................39 2-1 研究目的.........................................40 2-2 研究方法.........................................41 參考文獻.................................................42 第三章  實驗設備及製程.................................43 3-1 催化劑的製備.....................................43 3-2 前處理及碳管成長.................................45 3-2-1 機台簡介...................................45 3-2-2 製程方式...................................45 3-3 檢測機台.........................................47 參考文獻.................................................51 第四章  結果與討論.....................................52 4-1 碳管成長的可能機制及對力學研究:碳管成長的三步驟..52 4-1-1反應器系統的研究............................54 4-1-2 控制奈米碳管叢成長高度的碳管直徑...........63 4-1-3 成核的可能機制及控制步驟...................67 4-1-4 穩態成長的可能機制及控制步驟...............74 4-1-5 成長減慢到催化劑去活化的可能機制及控制步驟.77 4-1-6碳供給路徑..................................84 4-1-7 結論.......................................85 4-2 比較各催化劑對成長奈米碳管的影響.................85 4-2-1 各催化劑成長奈米碳管的形貌、結構及特色.....86 4-2-2 各催化劑前處理的結果及對奈米碳管成長的影響.92 4-2-3 製程溫度對各催化劑成長奈米碳管的影響.......98 4-2-4 成長氣體比例對各催化劑成長奈米碳管的影響..103 4-2-5 成長環境變動對各催化劑成長奈米碳管的影響..105 參考文獻................................................107 第五章  總結與未來展望................................108 5-1 總結............................................108 5-2 未來展望.......................................109 5-2-1建立對奈米碳管成長的資料庫................109 5-2-2密度控制對場發射的應用....................109 參考文獻...............................................111

    1. S. Iijima nature 354(1991) 56.
    2. Yoshinori Ando et al, Martials today (October 2004) 22
    3. Ando, Y., Fullerene Sci. Tech. 2 (1994)173
    4. Journet, C., et al., Nature 388 (1997) 756
    5. 莊鎮宇,國立清華大學 工程與系統科學系博士論文。(中華名國九十三年七月)
    6. Thess, A., et al., Science 273, (1996) 483
    7. Bandow, S., et al., Phys. Rev. Lett. 80 (17), (1998) 3779
    8. Sen, R., et al., Chem. Phys. Lett. 332 (5-6), (2000) 467
    9. Kataura, H., et al., Carbon 38 (11-12), (2000)1691
    10. S. Hofmann et al, Applied Phyiscs Letters 83 (2003) 4661
    11. Yahachi Saito et al. Japanese Journal of Applied Physics 33 (1994) L526-L529
    12. Y. Saito et al. Chemical Physics Letters 236 (1995) 419-426
    13. K.A. Williams et al. Cchemical Physics Letters 310 (1999) 31–37
    14. Dan Zhou et al. Applied Physics Letters 65 (1994) 12
    15. Hiromichi KATAURA Japanese Journal of Applied Physics 37 (1998) L 616–L 618
    16. Andreas Thess et al. Science 273 (1996) 5274
    17. Henning Kanzow et al. Chemical Physics Letters 295 (1998) 525–530
    18. H.M. Cheng et al. Chemical Physics Letters 289 (1998) 602–610
    19. Hongjie Dai et al Chemical Physics Letters 260 (1996) 471-475
    20. A. Peigney et al. Journal of Materials Research 12(1997) 3
    21. Fonseca et al. Applied Physics A 67 (1998) 11
    22. K. Hernadi et al. Carbon 34 (1996) 1249
    23. V. Ivanov et al. Chemical Physics Letters 233 (1994) 329
    24. N. M. Rodriguez et al. Langmuir 11 (1995) 3862
    25. W. B. Downs Journal of Materials Research 10 (1996) 625
    26. Toshiaki Kato et al, Chemical Physics Letters 381 (2003) 422
    27. Toshiaki KATO et al, Japanese Journal of Applied Physics 37 43 (2004) 1278
    28. S. Hofmann Applied Physics Letters 83 (2004) 1
    29. Jing Kong et al. Chemical Physics Letters 292 (1998) 567-574
    30. J.W. Ward et al. Chemical Physics Letters 376 (2003) 717–725
    31. G. L. Hornyak et al. Journal of Physics Chemical B 106 (2002) 2821-2825
    32. Robert Seidel et al. Journal of Physics Chemical B 108 (2004) 1888-1893
    33. Kohei Mizuno et al. Journal of Physics Chemical B 109 (2005) 2632-2637
    34. W.E. Alvarez et al. Carbon 39 (2001) 547–558
    35. Yun Tack Lee et al. Journal of Physics Chemical B 106 (2002) 7614-7618
    36. Nam Seo Kim et al. Journal of Physics Chemical B 106 (2002) 9286-9290
    37. Cheol Jin Lee, et al. Chemical Physics Letters 341 (2001) 245-249
    38. C.J. Lee et al. / Chemical Physics Letters 360 (2002) 250–255
    39. Caterina Ducati et al. Journal of Applied Physics 92 (2002) 6
    40. Yoon-Taek Jang et al. Chemical Physics Letters 372 (2003) 745–749
    41. Klara Hernadi et al. Applied Catalysis A: General 199 (2000) 245–255
    42. E.F. Kukovitsky et al.Chemical Physics Letters 317 2000 65–70
    43. Oleg A. Louchev, et al. Journal of applied physics vol.94 No.3
    44. R. S. Wagner, et al Applied Physics Letters 4 (1964) No.3
    45. 工業觸媒講義,中國石油公司研究及訓練中心編印
    46. Eugene B.H. Quah, et al. Applied Catalysis A: General 250 (2003) 83–94
    47. Andreas K. Schaper, et al. Journal of Catalysis 222 (2004) 250–254
    48. Young Hee Lee, et al. Physica review lettrers, 78/12
    49. Stig Helveg, et al. Nature Vol.427 (2004) no.29
    50. M. Pérez-Cabero et al. Journal of Catalysis 224 (2004) 197–205
    51. Caterina Ducati, et al. Journal of Applied Physics 92 (2002) 3299
    52. Yun Tack Lee, et al. Journal of Physical Chemistry B 106 (2002) 7614-7618
    53. K. Bartsch, et al Journal of applied physics 97 (2005) 114301
    54. Christian Klinke, et al Physical review B 71, (2005) 035403
    55. Cheol Jin Lee, et al Chemical Physics Letters 360 (2002) 250-255
    56. Francisco Zaera, et al Catalysis Today 81 (2003) 149
    57. Yoshikazu Homma, et al Y Journal of Physics Chemistry B 2003, 107, 12161-12164
    58. Shoushan Fan, et al Science vol.283 1999 no.22
    59. Jing Kong, et al Chemical Physics Letter 292(1998) 567-574
    60. Jose E. Herrera, et al Journal of Catalysis 204 (2001) 129–145
    61. Q. Jiang, et al Materials Letters 56 (2002) 1019– 10
    62. Q. Jiang, et al Materials Chemistry and Physics 82 (2003) 225–227
    63. Q. Jiang, et al Nanotechnology 14(2003) 438-442
    64. Vincenzo Vinciguerra1, et al Nanotechnology 14 (2003) 655–660
    65. Christian Klinke, et al Physical review B 71, (2005) 035403
    66. Xihong Chen ,et al Micron 35 (2004) 455–460
    67. Stig Helveg, et al. Nature Vol.427 (2004) no.29
    68. Yun Tack Lee et al. Journal of Physics Chemical B 106 (2002) 7614-7618
    69. 汪健民 材料分析, 中國材料科學學會, 1998, 新竹市
    70. 翁政輝,國立清華大學 工程與系統科學系 碩士論文。(中華名國九十三年六月)
    71. Octave Levenspiel, 李尚凡, 化學反應工程, 三版修訂, 高立, 2001
    72. Bird, R. Byron et al, Transport phenomena, Wiley, New York, 1960
    73. Caterina Ducati et al, Journal of Applied Physics 92 (2002) 3299
    74. Oleg A. Louchev et al, Journal of Chemical Physics 118 (2003) 7622
    75. Christian Klinke et al, Physical Review B 71 (2005) 035403
    76. Young Hee Lee, et al. Physical Review Letters vol.78 no.12 (1997)
    77. R. M. Watwe et al, Journal of Catalyst 189 (2000) 16-30
    78. K. Bartsch et al, Journal of Applied Physics 97 (2005) 114301
    79. Oleg A. Louchev, Applied Physics Letters 80 (2002) 2752
    80. Yun Tack Lee et al, Journal of Physical Chemistry B, 106 (2002) 7614-7618
    81. Y. Shiratori et al, Materials Chemistry and Physics 87 (2004) 31-38
    82. I. Alstrup, Journal of catalyst 109 (1988) 241
    83. 鄧禮堂, 化學反應工程, 第一版, 高立, 台北市, 1985
    84. 莊鎮宇,國立清華大學 工程與系統科學系博士論文。(中華名國九十三年七月)
    85. Xihong Chen ,et al Micron 35 (2004) 455–460
    86. 辛坤瑩,國立清華大學 工程與系統科學系博士初稿。(中華名國九十四年五月)
    87. Stig Helveg et al, Nature vol.427 (2004) 426
    88. J.K.W. Sandler et al. Polymer 44 (2003) 5893–5899

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE