簡易檢索 / 詳目顯示

研究生: 陳昀煊
Chen, Yun Hsuan
論文名稱: 利用X光平均應變量測法結合奈米壓印法量測氮化鋯薄膜之殘餘應力
Measurement of residual stress of ZrN thin film by using average X-ray strain method combined with nano-indentation
指導教授: 喻冀平
Yu, Ge Ping
黃嘉宏
Huang, Jia Hong
口試委員: 呂福興
Lu, Fu Hsing
林郁洧
Lin, Yu Wei
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 103
中文關鍵詞: 薄膜X光繞射殘餘應力氮化鋯
外文關鍵詞: thin film, X-ray diffraction, residual stress, ZrN
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於利用X光平均應變量測法結合奈米壓印法來準確量測氮化鋯薄膜之殘餘應力,並探討本方法所能應用的厚度極限為何,本研究目標在於藉由取得足夠的取樣體積證明本方法能夠克服非等向性的問題。

    從X光平均應變的公式(σ = (AXS) E/(1+ν))可以知道說:殘餘應力可以藉由將彈性係數及柏松比帶入平均應變公式取得,本次實驗使用奈米壓印法來量測氮化鋯薄膜之彈性係數,並藉由使用多個φ角以取得足夠的取樣體積來量測X光平均應變(AXS),X光所量得的殘餘應力的準確性可以藉由跟光學應力進行比較以驗證。實驗結果證明X光所量得的應力數值相當接近光學的結果,且利用最厚試片的彈性係數代入薄的試片所量得的X光應力數值跟光學應力的結果相差最大只有4%左右。由實驗的結果可以發現到奈米壓印法所能準確量測薄膜彈性係數的極限為500奈米左右,而AXS量測的準確性則可以達到200奈米。從應變對φ角分布圖可以注意到各試片φ角所量測到的應變數值隨著試片厚度減少而震盪漸趨劇烈,因此對於厚度小於500奈米的試片,φ角建議需要取7個或是更多以進行X光繞射量測才能量得準確的整體平均應變數值。對於AXS方法,結果顯示氮化鋯薄膜所能量測的極限厚度為200奈米。最後304不鏽鋼基材的氮化鋯薄膜的殘餘應力也成功地被量測出來,且發現到比矽基材的試片的應力大上4 GPa 左右。


    The purpose of this study is to utilize average X-ray strain (AXS) method combined with nano-indentation to accurately measure the residual stress of ZrN thin film and to find out the limit thickness of our method. The goal is to verify that AXS method could overcome the problem of anisotropy by increasing the sampling volume.
    Based on the equation of AXS (σ = (AXS) E/(1+ν)), it is known that stress value can be obtained by incorporating the elastic constant and strain value AXS. The elastic constant incorporated into the AXS equation to obtain the X-ray stress of the samples was measured by nano-indentation. In order to have sufficient sampling volume, multiple φ angles were chosen to carry out the X-ray diffraction measurement, and the accuracy of the X-ray stress was confirmed by comparing with the optical stress. By incorporating reliable elastic constant and accurate AXS value, the stress value of X-ray diffraction method turns out to be very close to the optical residual stress. The largest deviation was about 4% for the X-ray stress obtained by incorporated the elastic constant of the thickest sample. It is found that the limit for nano-indentation to accurately measure the elastic constant of ZrN thin film is 500 nm, and the accuracy of AXS can reach to 200 nm with enough sampling volume. It is found that the fluctuation of the strain values measured by the φ angles increases as film thickness decreases from the distribution of strain value in respect of φ angles. It is thus recommended to utilize 7 or more φ angles to carry out the X-ray diffraction measurement to obtain accurate AXS value for the film thinner than 500 nm. The limit thickness of ZrN thin film for AXS method to carry out turns out to be 200 nm. The X-ray stress of ZrN thin film of 304SS substrate was also successfully measured, and it is about 4 GPa larger than the one of Si substrate.

    Abstract i 摘要 ii 致謝 iii Contents v List of Figures viii List of Tables xi Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Deposition method 3 2.2 Characteristics of ZrN film 6 2.3 Optical curvature technique 8 2.4 〖sin〗^2 Ψ method 8 2.4.1 Traditional sin^2 Ψ method 8 2.4.2 Modified sin^2 Ψ method 11 2.5 〖cos〗^2 α〖sin〗^2 Ψ method 12 2.5.1 Grazing incidence cos^2 αsin^2 Ψ method 12 2.5.2 Derivation of cos^2 αsin^2 Ψ method 15 2.6 Theoretical basis of average X-ray strain (AXS) 22 2.7 X-ray studies of our group 25 Chapter 3 Experimental details 27 3.1 Specimen preparation and deposition process for ZrN film 27 3.2 Experimental procedure 28 3.3 Characterization methods 32 3.3.1 XRD 32 3.3.2 GIXRD 33 3.3.3 SEM 33 3.3.4 AFM 33 3.3.5 XPS 34 3.4 Properties measurements 36 3.4.1 Four-point probe 36 3.4.2 Nano-indentation (NIP) 38 3.4.3 Laser optical curvature 39 Chapter 4 Results 42 4.1 Characterization 45 4.1.1 XRD 45 4.1.2 GIXRD 47 4.1.3 SEM 49 4.1.4 Chemical composition (XPS) 51 4.1.5 Roughness 51 4.2 Properties 52 4.2.1 Hardness and elastic constant 52 4.2.2 Optical residual stress 54 4.2.3 X-ray residual stress 56 4.2.4 Resistivity 58 Chapter 5 Discussion 59 5.1 Comparison between the results of X-ray diffraction and laser curvature technique 59 5.2 The distribution of strain value in respect of φ angles 62 5.3 The value of elastic constant measured by nano-indentation 63 5.4 Residual stress state of ZrN film of stainless steel substrate 64 5.5 The limit of film thickness 66 5.6 The merits and drawbacks of our method comparing to other techniques. 68 Chapter 6 Conclusion 70 Chapter 7 References 71 Appendix 79 Appendix A. The SEM image of the samples 79 Appendix B. Deconvolution XPS spectra of samples 81 Appendix C. AXS regression line 93 Appendix D. Brief guide of using 〖cos〗^2 α〖sin〗^2 Ψ method to measure AXS and stress 102

    [1] J. Nagahama, H. Yumoto, Application of Fe oxide films prepared by PVD methods to protect Fe metal from corrosion, Surf.Coat.Technol., 169–170 (2003) 658-661.
    [2] K.S. Hideto Yanagisawa, Yoshio Abe, Midori Kawamura,Satoko Shinkai, Study on Preparation Conditions of High-Quality ZrN Thin Films Using a Low-Temperature Process, Jpn.J.Appl.Phys., 37 (1998).
    [3] L.E.Toth, Transition metal carbides and nitrides, Academic Press, New York, 1971.
    [4] S. Horita, M. Kobayashi, H. Akahori, T. Hata, Material properties of ZrN film on silicon prepared by low-energy ion-assisted deposition, Surf.Coat.Technol., 66 (1994) 318-322.
    [5] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf.Coat.Technol., 41 (1990) 191-204.
    [6] L. van Leaven, M.N. Alias, R. Brown, Corrosion behavior of ion plated and implated films, Surf.Coat.Technol., 53 (1992) 25-34.
    [7] M.B. Takeyama, A. Noya, K. Sakanishi, Diffusion barrier properties of ZrN films in the Cu/Si contact systems, J.Vac.Sci.Technol.B, 18 (2000) 1333-1337.
    [8] M.B. Takeyama, T. Itoi, E. Aoyagi, A. Noya, High performance of thin nano-crystalline ZrN diffusion barriers in Cu/Si contact systems, Appl.Surf.Sci., 190 (2002) 450-454.
    [9] P. Panjan, B. Navinšek, A. Žabkar, V. Marinković, D. Mandrino, J. Fišer, Structural analysis of ZrN and TiN films prepared by reactive plasma beam deposition, Thin Solid Films, 228 (1993) 233-237.
    [10] P.C. Johnson, H. Randhawa, Zirconium nitride films prepared by cathodic arc plasma deposition process, Surf.Coat.Technol., 33 (1987) 53-62.
    [11] E. Kelesoglu, C. Mitterer, M.K. Kazmanli, M. Ürgen, Microstructure and properties of nitride and diboride hard coatings deposited under intense mild-energy ion bombardment, Surf.Coat.Technol., 116–119 (1999) 133-140.
    [12] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Decorative hard coatings with improved corrosion resistance, Surf.Coat.Technol., 112 (1999) 108-113.
    [13] J. Westlinder, J. Malmström, G. Sjöblom, J. Olsson, Low-resistivity ZrNx metal gate in MOS devices, Solid-State Electronics, 49 (2005) 1410-1413.
    [14] D.Cullity, Elements of X-ray Diffraction, 3 ed., Prentice Hall, New Jersey, 2001.
    [15] A.-N. Wang, C.-P. Chuang, G.-P. Yu, J.-H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ X-ray diffraction method, Surf.Coat.Technol., 262 (2015) 40-47.
    [16] C. Sarioglu, The effect of anisotropy on residual stress values and modification of Serruys approach to residual stress calculations for coatings such as TiN,ZrN and HfN, Surf.Coat.Technol., 201 (2006) 707-717.
    [17] W.N. Sharpe, Jr., B. Yuan, R.L. Edwards, A new technique for measuring the mechanical properties of thin films, J.Microelectromech.S., 6 (1997) 193-199.
    [18] Y.-W. Cheng, D.T. Read, J.D. McColskey, J.E. Wright, A tensile-testing technique for micrometer-sized free-standing thin films, Thin Solid Films, 484 (2005) 426-432.
    [19] R.D. Emery, G.L. Povirk, Tensile behavior of free-standing gold films. Part I. Coarse-grained films, Acta. Mater., 51 (2003) 2067-2078.
    [20] J.J. Vlassak, W.D. Nix, A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films, J.Mater.Res., 7 (1992) 3242-3249.
    [21] A.J. Kalkman, A.H. Verbruggen, G.C.A.M. Janssen, High-temperature bulge-test setup for mechanical testing of free-standing thin films, Rev.Sci.Instrum., 74 (2003) 1383-1385.
    [22] C.K. Huang, W.M. Lou, C.J. Tsai, T.-C. Wu, H.-Y. Lin, Mechanical properties of polymer thin film measured by the bulge test, Thin Solid Films, 515 (2007) 7222-7226.
    [23] M. Hoffmann, R. Birringer, Quantitative measurements of Young's modulus using the miniaturized disk-bend test, Mat.Sci.Eng.A-Struct, 202 (1995) 18-25.
    [24] Y. Tomioka, N. Yuki, Bend stiffness of copper and copper alloy foils, J.Mater.Process.Technol., 146 (2004) 228-233.
    [25] S. Liu, Q.J. Wang, Determination of Young's modulus and Poisson's ratio for coatings, Surf.Coat.Technol., 201 (2007) 6470-6477.
    [26] J.A. Ruud, A. Witvrouw, F. Spaepen, Bulk and interface stresses in silver‐nickel multilayered thin films, J.Appl.Phys., 74 (1993) 2517-2523.
    [27] J.-H. Zhao, Y. Du, M. Morgen, P.S. Ho, Simultaneous measurement of Young’s modulus, Poisson ratio, and coefficient of thermal expansion of thin films on substrates, J.Appl.Phys., 87 (2000) 1575-1577.
    [28] D.F. G Carlotti, G S ocino,E Verona, Brillouin scattering determination of the whole set of elastic constants of a single transparent film of hexagonal symmetry, J.Phys., 7 (1995).
    [29] P.-O. Renault, E. Le Bourhis, P. Villain, P. Goudeau, K.F. Badawi, D. Faurie, Measurement of the elastic constants of textured anisotropic thin films from x-ray diffraction data, Appl.Phys.Lett., 83 (2003) 473-475.
    [30] M.Ohring, The Material Science of Thin Films, Academic Press, San Diego, 1992.
    [31] J. Musil, J. Vlček, Magnetron sputtering of hard nanocomposite coatings and their properties, Surf.Coat.Technol., 142–144 (2001) 557-566.
    [32] H.L. McLeod PS, High‐rate sputtering of aluminum for metallization of integrated circuits, J.Vac.Sci.Technol., 14(1) (1977).
    [33] W. RK, Planar magnetron sputtering, Journal of Vacuum Science and Technology, 15(2) (1978).
    [34] B. Window, Recent advances in sputter deposition, Surf.Coat.Technol., 71 (1995) 93-97.
    [35] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 56 (2000) 159-172.
    [36] T. DG, U.S.A No.5 556 519.
    [37] B. Window, N. Savvides, Charged particle fluxes from planar magnetron sputtering sources, Journal of Vacuum Science & Technology A, 4 (1986) 196-202.
    [38] R.P. Howson, H.A. J'Afer, A.G. Spencer, Substrate effects from an unbalanced magnetron, Thin Solid Films, 193–194, Part 1 (1990) 127-137.
    [39] W.D. Sproul, High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings, Vacuum, 51 (1998) 641-646.
    [40] P.J. Kelly, R.D. Arnell, Characterization studies of the structure of Al, Zr, and W coatings deposited by closed-field unbalanced magnetron sputtering, Surf.Coat.Technol., 97 (1997) 595-602.
    [41] W.-J. Chou, G.-P. Yu, J.-H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surf.Coat.Technol., 149 (2002) 7-13.
    [42] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf.Coat.Technol., 191 (2005) 17-24.
    [43] E. Török, A.J. Perry, L. Chollet, W.D. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 153 (1987) 37-43.
    [44] J. Adachi, K. Kurosaki, M. Uno, S. Yamanaka, Porosity influence on the mechanical properties of polycrystalline zirconium nitride ceramics, Journal of Nuclear Materials, 358 (2006) 106-110.
    [45] A. Singh, P. Kuppusami, S. Khan, C. Sudha, R. Thirumurugesan, R. Ramaseshan, R. Divakar, E. Mohandas, S. Dash, Influence of nitrogen flow rate on microstructural and nanomechanical properties of Zr–N thin films prepared by pulsed DC magnetron sputtering, Appl.Surf.Sci., 280 (2013) 117-123.
    [46] J. Ping, M. Shigeo, Stress Relaxation in Reactively Sputter-Deposited TiO x N y Films, Jpn.J.Appl.Phys., 30 (1991) 2058.
    [47] J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films, Thin Solid Films, 171 (1989) 5-31.
    [48] Okamoto, H., N-Zr (Nitrogen-Zirconium). Journal of Phase Equilibria and Diffusion, 2006. 27(5): p. 551-551., DOI.
    [49] G.G.Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. A Mat., A82 (1909).
    [50] Y.H. Yu, M.O. Lai, L. Lu, P. Yang, Measurement of residual stress of PZT thin film on Si(100) by synchrotron X-ray rocking curve technique, J.Alloy Compd., 449 (2008) 56-59.
    [51] C.A. Klein, How accurate are Stoney’s equation and recent modifications, J.Appl.Phys., 88 (2000) 5487.
    [52] M. Laugier, The effect of ion bombardment on stress and adhesion in thin films of silver and aluminum, Thin Solid Films, 81 (1981) 61-69.
    [53] A. Moridi, H. Ruan, L.C. Zhang, M. Liu, Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations, International Journal of Solids and Structures, 50 (2013) 3562-3569.
    [54] J.-Y. Chang, G.-P. Yu, J.-H. Huang, Determination of Young's modulus and Poisson's ratio of thin films by combining sin2ψ X-ray diffraction and laser curvature methods, Thin Solid Films, 517 (2009) 6759-6766.
    [55] A.K. A.R.Shetty, Texture change through film thickness and off accommodation of (002) planes, Appl.Surf.Sci., 258 (2011) 1630-1638.
    [56] K.R. Valvoda.V, Cerny.R,Rafaja.D,Musil.J, Kadlec.S,Perry. A, Structural analysis of TiN films by Seemann-Bohlin X-ray diffraction, Thin Solid Films, 193/194 (1990) 401-408.
    [57] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78.
    [58] W.-E. Fu, Y.-Q. Chang, B.-C. He, C.-L. Wu, Determination of Young's modulus and Poisson's ratio of thin films by X-ray methods, Thin Solid Films, 544 (2013) 201-205.
    [59] V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods, 1st Edition ed., Elsevier Science, Aachen,Germany, 10 Nov 1997.
    [60] C.-S. Wu, Residual stress measurement in highly textured thin film by in-plane x-ray diffraction, 2012.
    [61] Z. Matěj, R. Kužel, L. Nichtová, X-Ray Diffraction Analysis of Residual Stress in Thin Polycrystalline Anatase Films and Elastic Anisotropy of Anatase, Metall and Mat Trans A, 42 (2011) 3323-3332.
    [62] A.J. Perry, A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN, Thin Solid Films, 193–194, Part 1 (1990) 463-471.
    [63] P.Scherrer,Gött.Nachr. 2(1918) 98., DOI.
    [64] L.V.Azaroff, M.J.Buerger, The power method in X-ray crystallography, McGraw-Hill, New York.
    [65] D. Briggs, M.P. Seah, Practical Surface Analysis: Auger and X-ray photoelectron spectroscopy, 2 ed., John Wiley and Sons, Chichester, 1990.
    [66] http:/www.cem.msu.edu/~cem924sg/XPSASFs.html.
    [67] S.M. Sze, VLSI Technology, Bell Laboratories, Murray Hill, New Jersey (1983) 184.
    [68] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J.Mater.Res., 7/6 (1992).
    [69] P.D. D. Faurie, E. Le Bourhis, P.-O. Renault, Y. Roussigné, S.M. Chérif, R. Brenner, O. Castelnau, G. Patriarche, Ph. Goudeau, Elastic anisotropy of polycrystalline Au films: Modeling and respective contribution of X-ray diffraction,nanoindentation and Brillouin light scattering, Acta. Mater., 58 (2010) 4998-5008.
    [70] W.D. Nix, Mechanical properties of thin films, Metall and Mat Trans A, 20 (1989) 2217-2245.
    [71] Z.A. A.Reuss, Math.Mech, 9 (1929).
    [72] W.Voigt, Lehrbuch der Kristallphysik, DOI (1910).
    [73] Hill R. Proc Phys Soc Lond 1952;65:349, DOI.
    [74] Neerfeld H, Mitt K-Wilh. Inst Eisenforschg 1942;24:61, DOI.
    [75] Aaron M.Vodnick, David E.Nowak, Stephane Labat, Olivier Thomas, S. P.Baker, Out-of-plane stresses arising from grain interactions in textured thin films, Acta. Mater., 58 (2010) 2452-2463.
    [76] L.E. Koutsokeras, G. Abadias, Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques, J.Appl.Phys., 111 (2012) 093509.
    [77] K. Tanaka, Y. Akiniwa, Effect of Secondary Phase on Elastic Constants for Stress Measurement of Multi-Phase Materials by X-Ray and Neutron Diffraction Methods, JSME international journal. Series A, Solid mechanics and material engineering, 41 (1998) 280-286.
    [78] H. Holleck, Material selection for hard coatings, Journal of Vacuum Science & Technology A, 4 (1986) 2661-2669.
    [79] R. Hull, Properties of crystalline silicon, the Institution of Electrical Engineers, London, 1999.
    [80]http://www.aksteel.com/pdf/markets_products/stainless/austenitic/304_304L_Date_Sheet.pdf.
    [81] L.M. Peng, Electron atomic scattering factors and scattering potentials of crystals, Micron, 30 (1999) 625-648.
    [82]http://lamp.tu-graz.ac.at/~hadley/ss1/crystaldiffraction/atomicformfactors/formfactors.php
    [83] J. Keckes, M. Bartosik, R. Daniel, C. Mitterer, G. Maier, W. Ecker, J. Vila-Comamala, C. David, S. Schoeder, M. Burghammer, X-ray nanodiffraction reveals strain and microstructure evolution in nanocrystalline thin films, Scripta Materialia, 67 (2012) 748-751.
    [84] X. Chen, S.Y. Zhang, J. Wang, J.F. Kelleher, Residual stresses determination in an 80mm Incoloy 800H weld via neutron diffraction, Materials & Design, 76 (2015) 26-31.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE