簡易檢索 / 詳目顯示

研究生: 胡智閔
Hu, Chih-Min
論文名稱: LDMOSFET的射頻特性及其切換開關應用
High-Voltage LDMOSFET Radio Frequency Characteristics and its Switching Circuit Applications
指導教授: 龔正
Gong, Jeng
黃智方
Huang, Chih-Fang
口試委員: 朱聖緣
陳志方
張大強
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 93
中文關鍵詞: 橫向雙擴散金氧半場效電晶體射頻小訊號等效電路模型射頻開關
外文關鍵詞: LDMOSFET, RF small-signal equivalent circuit model, RF switch
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In recent years, due to the fast emerging for the communication products, demands for power devices have risen substantially. In keeping with the trend of circuit integration, traditional vertical power device needs to be modified as a lateral structure to achieve the possibility for the integration of power devices and logic circuit on a single chip. The LDMOSFET transistor is one of the main power devices for commercial communication applications and RF amplifying circuit. It is very important to build an accurate RF small-signal equivalent circuit which contains the frequency-dependent parts, such as capacitances, inductances, and extrinsic interconnection resistances. It is helpful for circuit designer to predict the RF circuit performance which is composed of these transistors.
    This study proposed the RF small-signal equivalent circuit of the LDMOSFET device. Utilizing cold-FET method and high frequency approximation those extrinsic parameters of device can be extracted. Besides, the 2-port network equations were used for the extraction of intrinsic device parameters. This small-signal equivalent circuit is used to monitor the transistor electric behavior and this study also presents the comprehensive methods for the application of RF LDMOSFET Transmit/Receive (T/R) switching circuit with high output power-handling capability and low insertion loss. The simulated results of the RF switching characteristics show a good agreement as compared with the measured S-parameters.
    The RF power device is fabricated by a 0.25-um LDMOSFET high voltage process. The measured trans-conductance up to 60 S, input 1-dB compression point of 23 dBm and the output power handling capability can be achieved to 27 dBm. The T/R RF switching circuit implemented using 0.25-um LDMOSFET transistors for 900-MHz switching circuit application is present. In particular, a 900-MHz switching circuit with measured insertion loss less than 1 dB, isolation up to 22 dB and input third-order intercept point of 25 dBm is obtained. It shows a good RF performance and increased the high integration level for the front-end module (FEM).


    Abstract I Contents III Chapter 1 Introduction 1 1.1 Wireless Communication Introduction 1 1.2 Motivation 1 1.3 Thesis Framework 2 Chapter 2 Theory Review 4 2.1 Process Integration of High Voltage Devices 4 2.2 Breakdown Mechanism and Device Characteristics 5 2.2.1 Breakdown Mechanism 5 (a) Zener breakdown (tunneling effect) 5 (b) Avalanche breakdown 5 2.1.2 Turn-On Resistance 8 2.1.3 RESURF (REduced SURface Field) Concept 9 2.3 Other Methods for Optimum RON, SP vs. BV 10 2.3.1 Double RESURF Concept 10 2.3.2 Field-Plate Concept 11 2.4 RF Introduction 11 2.5 S-parameter Definition 12 2.6 Insertion Loss 13 2.7 Isolation 13 2.8 Linearity 14 2.8.1 Output P1dB Gain Compression Point 15 2.8.2 Inter-Modulation Distortion 16 Chapter 3 LDMOSFET RF Small-Signal Model 3-1 Introduction 31 3-2 Pad Parasitic 32 3-3 Parameter Extraction 32 3-3-1 Voltage-Dependent 32 3-3-2 Width-Dependent 32 3-4 LDMOSFET Small-Signal Equivalent Circuit 32 3-4-1 Field-Plate Capacitance 35 3-4-2 The Model with and without Cfp 36 Chapter 4 LDMOSFET-based RF T/R switch 4.1 Introduction 53 4.2 Switching Transistor 54 4.2.1 Switching Transistor Equivalent Circuit 54 4.2.2 Insertion Loss and Isolation 54 4.2.3 Switching Transistor Characteristics 55 4.3 Switching Transistor Characteristics Extraction56 4.3.1 Simulated Results versus Measured Data 57 4.4 T/R Switching Equivalent Circuit 58 4.5 Switching Transistor Trade-off 58 4.5.1 Insertion Loss and Isolation 58 4.6 Linearity 59 4.6.1 Switching Transistor Linearity 59 4.6.2 T/R Switching Circuit Linearity 59 Chapter 5 Conclusion 5.1 Power Improvement 85 5.2 Layout Modification 85 5.3 Conclusion 85 References 89

    [1] R.-Y. Su, “The Characteristics of LDMOSFET with Multiple Electric Field,” PHD Thesis, 2009.
    [2] C.-H. Chu, “Design of CMOS RF Transmit/Receive Switch and Low Noise Amplifier,” PHD Thesis, 2009.
    [3] R.-Y. Su, P.-Y. Chiang, J. Gong, T.-Y. Huang, C.-L. Tsai, C.-C. Chou, and C.-M. Liu, “Experimental Results of ON-State Resistance Reduction by STI Fingers in LDMOSFET,” IEEE Electron Device Letter, vol. 30, no. 2, 2009, pp 192-194.
    [4] R.-Y. Su, P.-Y. Chiang, J. Gong, T.-Y. Huang, J.-L. Tsai, Liu Mingo, C.-C. Chou, “On-state Resistance Improvement by Partially Slotted STI LDMOS Transistor in 0.25-Micron Smart Power Technology,” in Proc. IEEE Conf. ICSICT, 2008, pp 199-202.
    [5] W. R. Burger, “Recent Advances in RF-LDMOS High-Power IC Development,” in Proc. IEEE Conf. ICICDT, 2009, pp. 35–38.
    [6] E. McShane, K. Shenai, “The Design, Characterization, and Modeling of RF LDMOSFETs on Silicon-On-Insulator Material,” IEEE Trans. on Electron Devices., vol. 49 , 2002, pp.643-651.
    [7] G. Dambrine, A. Cappy, F. Heriodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Transactions on Microwave Theory and Technique, vol. 36, pp 1151-1159, 1988.
    [8] J. Wood, P. H. Aaen, “On the Modeling of LDMOS RF Power Transistors,” in Proc. IEEE Conf. CSICS, 2010, pp. 1-8.
    [9] J. M. Collantes, J. J. Raoux, R. Quere, A. Suarez , “New Measurement-Based Technique for RF LDMOS Nonlinear Modeling,” in Proc. IEEE Microw. and Guided Lett., 1998, pp. 345–347.
    [10] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, and T. Ogura, “Design and demonstration of high breakdown voltage GaN high electron mobility transistor (HEMT) using field plate structure for power electronics application,” Jpn. J. Appl. Phys., vol. 43, pp. 2239–2242, 2004.
    [11] Chien-Nan Liao, Ping-hung Lai, Tien-Chun Li, Feng-Tso Chien, and Yao-Tsung Tsai, "Comparison of Termination Structure Design by Device Simulator," IEEE PEDG , pp. 530-533 , 2010-06.
    [12] C. B. Goud and K. N. Bhat, "Two-dimensional analysis and design considerations of high-voltage planar junctions equipped with field plate and guard ring," IEEE Trans. Electron Devices, vol. 38, pp.1497-1504, 1991.
    [13] D. Lovelace, J. Costa and N. Camilleri, “Extracting Small-Signal Model Parameters of Silicon MOSFET Transistors,” in Proc. IEEE Microwave Theory and Techniques Society International conf. , pp 865-868, 1994.
    [14] K.-M. Chang, H.-P. Wang, “A new small-signal MOSFET model and parameter extraction method for RF IC’s application,” Microelectronics Journal, vol 35, 2004, pp. 749-759.
    [15] J. Costa, M. Carroll, J. Jorgenson, T. Mckay, T. lvanov, T. Dinh, D. Kozuch, G. Remoundos, D. Kerr, A. Tombak, J. Mcmaken and M, Zybura , “A Silicon RFCMOS SOI Technology for Integrated Cellular/WLAN RF TX Modules,” in Proc. IEEE Conf., 2007, pp.445-448.
    [16] S. D.Meyer, H. Beaulaton ,“A 210 W LDMOS RF power transistor for 2.2 GHz cellular applications with enabling features for LTE base stations ,” Integrated Nonlinear Microwave and Millimetre-Wave Circuits, 2008, pp31-34.
    [17] B. Szelag, H. Baudry, D. Muller, A. Giry, D. Lenoble, B. Reynard, D. Pache and A. Monroy, “Integration and Optimisation of a high performance of RF Lateral DMOS in an advanced BiCMOS Technology,” in Proc. IEEE Conf., 2003 , pp.39-42.
    [18] D. Muller, J. Mourier, A. Perrotin, B. Szelag and A. Monroy, “Comparison of two types of lateral DMOSFET optimized for RF power applications,” IEEE ESSDERC, 2005, pp 125-128.
    [19] M. Zitouni, F. Morancho, P. Rossel, H. Tranduc, J. Buxo and I. Pages,”A New Concept for the Lateral DMOS Transistor for Smart Power IC’s”, in Proc. IEEE Conf., 1999, pp.73-76.
    [20] K. Kinoshita, Y. Kawaguchi, A. Nakagawa, “A new adaptive resurf concept for 20 V LDMOS without breakdown voltage degradation at high current,” in Proc. ISPSD, 1998, pp65-68.
    [21] H. Xu and K. O., “A 31.3-dBm Bulk CMOS T/R Switch Using Stacked Transistors With Sub-Design-Rule Channel Length in Floated p-Wells,” IEEE J. Solid-State Circuits, vol. 42, no. 11, 2007, pp.2528-2534.
    [22] N. A. Talwalkar, C. P. Yue, H. Gan and S. Wong, “Integrated CMOS Transmit-Receive Switch Using LC-tuned Substrate Bias for 2.4-GHz and 5.2-GHz Applications,” IEEE J. Solid-State Circuits, vol. 39, no. 6, 2004, pp.863-870.
    [23] A. Wood, C. Dragon and W. Burger, “High performance silicon LDMOS technology for 2 GHz RF power amplifier applications,” in IEMD Tech., 1996, pp. 87-90.
    [24] F.-J. Huang and K. O, “A 900-MH T/R switch with a 0.8-dB insertion loss implemented in 0.5-um CMOS process,” IEEE CICC, 2000, pp. 341-344.
    [25] J. Han, M. Je, and H. Shin, “A Simple and Method for Extracting Substrate Resistance of RF MOSFETs,” IEEE Electron Device Letter, vol. 23, no. 7, 2002, pp. 434-436.
    [26] F. J. Huang and K. O, “Single-Pole Double-Throw CMOS Switches for 900-MHz and 2.4-GHz Applications on p- Silicon Substrates,” IEEE J. Solid-State Circuits, vol. 39, NO. 1, 2004, pp. 35-41.
    [27] A. Moscatelli, C. Contiero, P. Galbiati, and C. Raffaglio, “A 12V Complementary RF LDMOS Technology Developed on a 0.18μm CMOS Platform,” in Proc. IEEE ISPSD conf., 2004, pp 37-40.
    [28] RF2436 Datasheet (Rev. A6, DS080128), “900MHz Transmit / Receive Switch”, RF Micro Devices, Inc.; HMC 226 Datasheet (V02.0502), “GaAs MMIC +3V SOT26 TRANSMIT/RECEIVE SWITCH, Hittitε, Inc.; MRFIC1807 Datasheet , “1.8 GHz Power Amp/Switch”, Motorola, Inc.; MRFIC1801 Datasheet , “1.8 GHz Antenna Switch”, Motorola, Inc.
    [29] P. Sen, and C.-J. Kim, “A Liquid-Metal RF MEMS Switch with DC-to-40 GHz Performance,” in Proc. IEEE MEMSYS Conf., 2009, pp 904-907.
    [30] N. Imai, A. Minakawa, and H. Okazaki, “Novel High-Isolation FET Switches, “ IEEE Transactions on Microwave Theory and techniques, vol. 44, no. 5, 1996, pp. 685-691.
    [31] M. Hieda, K. Nakahara, K. Miyaguchi, H. Kurusu, Y. Iyama, T. Takagi, and S. Urasaki , “High-Isolation Series-Shunt FET SPDT Switch with a Capacitor Canceling FET Parasitic Inductance, “ IEEE Transactions on Microwave Theory and techniques, vol. 49, no. 5, 2002, pp. 2453-2458.
    [32] S. Lee and H. K. Yu , “Parameter Extraction Technique for the Small-Signal Equivalent Circuit Model of Microwave Silicon MOSFETs,” IEEE High Speed Semiconductor Devices and Circuits. , 1993, pp.182-191.
    [33] Y.-H. Lin, C.-H. Chu, D.-C. Chang, J. Gong and Y.-Z. Juang, “Design of CMOS T/R switch using high substrate isolation and RF floated body for 1.9-GHz applications”, Microwave and Optical Technology Letters, vol. 51, 2009, pp 2145-2149.
    [34] F.-J. Huang and K. O, “A 0.5-μm CMOS T/R Switch for 900-MHz Wireless Applications,” IEEE J. Solid-State Circuits, vol. 36, no. 3, 2001, pp.486-492.
    [35] W. Wu, S. Lam and M. Chan, “A Wide-Band T/R Switch Using Enhanced Compact Waffle MOSFETs,” IEEE J. Solid-State Circuits, vol. 16, no. 5, 2006, pp. 287-289.
    [36] M. H. S. Maisureh, I. M. Azmi, S. Rasidah, A. I. A. Rshim and Y. M. Razman, “A 0.18μm CMOS T/R Switch for 900MHz Wireless Application,” in Proc. IEEE Conf., 2008, pp. 486-492.
    [37] C.-H. Chu, Y.-H. Lin, D.-C. Chang, J. Gong and Y.-Z. Juang, “A 900-MHz 30-dBm bulk CMOS Transmit/Receive switch using stacking architecture, high substrate isolation, and RF floated body,” JEMWA, vol.11, 2009, pp 91-107.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE