研究生: |
賴杰隆 Chieh-Lung Lai |
---|---|
論文名稱: |
以分子動力學來探討靜電效應在提升黏著作用和原子傳輸之效果 Molecular Dynamics Simulation of Electrostatic Effect in Enhancement of Adhesion Interaction and Atom Transfer |
指導教授: |
宋震國
Cheng-Kuo Sung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 分子動力學 、靜電效應 、黏著作用 、原子傳輸 |
外文關鍵詞: | molecular dynamics, electrostatic effect, adhesion interaction, atom transfer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在巨觀世界中,物件彼此之間所主導的作用力和奈米尺度的物件之間所主導的作用力是非常不同的。隨著物件尺度縮減至奈米尺度,量子現象和表面效應便逐漸地浮現。因此我們使用分子動力學來模擬奈米物件間的的作用。而這篇論文的主要目的就是要利用分子動力學來模擬在鍍金的原子力顯微鏡 (Atomic Force Microscopy) 探針和鍍金基材之間的靜電效應。
在分子動力學中,我們採用Morse勢能函數來描述金原子間的作用力,而整個原子架構是採用面心立方(FCC)的排列方式。因為所模擬的模型僅是實際元件的一部份,因此我們利用邊界條件的設定來彌補不足。整個模型分為兩個部分:一是由664顆金原子所組成的角錐形探針;另一是由2400顆金原子所組成的長方體基材。為了驗證模擬的結果,我們實際利用原子力顯微鏡來做實驗。
無論從模擬或實驗結果皆顯示,黏著作用 (Adhesive interaction)和原子傳輸 (Atom transfer) 皆隨探針和基材之間的電壓增加而增加,此亦證明靜電效應對於鍍金原子力顯微鏡探針和鍍金基材之間的黏著作用和原子傳輸具有增益的效用。
Interactions between macroscopic objects are quite different from those between nano-scale ones. When the size of a device is reduced to micrometer or even nanometer level, quantum and surface effects appear. This thesis presented molecular dynamics simulation and experiments to investigate the phenomenon of adhesion among nano-objects and the adhesion enhanced by externally applied electrostatic field. As an example, the enhancement of adhesion between the gold-coated atomic force microscopy (AFM) tip and the gold-coated substrate due to the application of electrostatic field were studied.
The Morse potential was employed in the molecular dynamics simulation, which governs the force interactions between gold atoms. The simulation model was composed of the gold-coated parts of the AFM tip and substrate, which was connected to the rest parts of AFM tip and substrate by the use of boundary conditions. The gold atoms were arranged in order according to face centric cubic (FCC) structure. The tip with the pyramidal shape was formed from 664 gold atoms, and the substrate with the cuboid shape was formed from 2400 gold atoms. An experimental study is conducted by using AFM that interacted with the substrate in order to prove the results of the molecular dynamics simulation. Finally, the results obtained from both molecular dynamics simulation and experiments showed that the electrostatic field could enhance the adhesion and the number of atoms transferred from the gold-coated AFM tip to the gold-coated substrate. In addition, the adhesion force and the number of atom transfer increased with the raise of bias voltage between the tip and the substrate.
[1] P. A. M. Dirac, “The Principles of Quantum Mechanics,” Oxford, 1958.
[2] J. H. Irving and J. G. Kirkwood,” The Statistical Mechanical Theory of Transport Properties. Ⅳ. The Equations of Hydrodynamics,” J. Chem. Phys., Vol. 18, pp. 817-823,1950.
[3] N. Metropolis, A. W. Rosenbluth, M. N. Rosenblluth, A. H. Teller, and E. Teller, “Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys., Vol. 21, pp. 1087-92, 1953.
[4] B. J. Alder and T. E. Wainwright,”Phase Transition for A Hard Sphere System,” J. Chem. Phys., Vol. 27, pp. 1208-9, 1957.
[5] B. J. Alder and T. E. Wainwright,”Studies in Molecular Dynamics. Ⅰ. General Method,” J. Chem. Phys., Vol. 31, pp. 459-466, 1959.
[6] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol. 114, No. 3, 1959.
[7] A. Rahman, “Correlations in the Motions of Atoms in Liquid Atom,” Phys. Rev., 136A, pp. 405-11, 1964.
[8] L. Verlet, “Computer ‘Experiments’ on Classical FluidsⅡ, Equilibrium Correlation Function,” Phys. Rev, Vol. 165, pp. 201~14, 1968.
[9] B. Quentrec and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations,” J. Comput. Phys. Vol. 13, pp. 430, 1975.
[10] D. C. Rapaport, “ Large-scale Molecular Dynamics Simulation Using Vector and Parallel Computers,” Comput. Phys. Rep. Vol. 9, pp. 1-53, 1988.
[11] G. S. Grest, B. Dunweg and K. Kremer, “Vectorized Link Cell Fortran Code for Molecular Dynamics Simulations for a Large Number of Particles,” Comput. Phys. Comm. Vol. 55(3), pp. 269-285, 1989.
[12] K. T. Lim, S. Brunett, “Molecular Dynamics for Very Large Systems on Massively Parallel Computers: The MPSim Program,” J. of Computational Chemistry, Vol. 18, No. 14, pp. 501-521, 1997.
[13] D. Roccatano, R. Bizzarri, “Development of a Parallel Molecular Dynamics Code on SIMD Computers: Algorithm for Use of Pair List Criterion,” J. of Computational Chemistry, Vol. 19, No. 7, pp. 685-694,1998.
[14] S. Toyoda, H. Miyagawa,”Development of MD Engine: High-Speed Acceleration with Parallel Processor Design for Molecular Dynamics Simulations,” J. of Computational Chemistry, Vol. 20, No. 2, pp. 185-199, 1999.
[15] J. M. Haile, ”Molecular Dynamics Simulation-Elementary Methods,” Clemson University, Clemson, South Carolina.
[16] 王竹西,統計物理學導論,凡異出版社,台灣,民國74年六月。
[17] J. E. Lennard-Jones, “The Determination of Molecular Fields.Ⅰ. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 441, 1924; “The Determination of Molecular Fields.Ⅱ. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 463, 1924.
[18] F. London, “Properties and Applications of Molecular Forces,” Zeit. Physik. Chem. B, 11 222 (1930).
[19] R. A. Johnson, “Analytic Nearest-Neighbor Model for FCC Metals,” Phy. Rev. B, Vol. 37(8), pp. 3924-3931, 1987.
[20] H. J. Mamin, P. H. Guethner, and D. Rugar, “Atomic Emission from a Gold Scanning- Tunneling-Microscope Tip,” Physical Review Letters, vol. 65, no.19, 1990
[21] J. I. Pascual, J. Mendez, J. Gomez-Herrero, A. M. Baro, and N. Garcia, “Quantum Contact in Gold Nanostructures by Scanning Tunneling Microscopy,” Physical Review Letters, vol. 71, no.12, 1993.
[22] J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov and S. Yip, “Interatomic Potential for Silicon Defects and Disorderer Phases,” Phys. Rev. B, Vol. 58, No. 5, pp. 2539-2550,1998.
[23] 陳道隆,以分子動力學研究奈米級微結構之拉伸、壓縮、扭轉變形機制,國立成功大學機械系碩士論文,民國90年7月。
[24] L. Verlet, “Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev, Vol. 159, 98, 1967.
[25] 楊宗賢,凡得瓦力與電容力在原子探針織效應分析,國立成功大學機械系碩士論文,民國89年6月。
[26] I. Dzyaloshinski, E. Lifshitz, and L. Pataeevski, “Molecular Interaction Forces between Solid Bodies,” Adv, Phys. 10, pp.184-199, 1961.
[27] H. C. Hamaker, “The London-van der Waals Attraction between Spherical Particles,” Physica 4, pp.1058-1072, 1937.
[28] Jacob N. Israelachvili, “Intermolecular and Surface Forces- with Applications to Colloidal and Biological systems,” Academic press, 1985.
[29] M. Saint Jean, S. Hudlet, C. Guthmann, and J. Berger, “van der Waals and Capacitive Forces in Atomic Microscopies,” J. Appl. Phys, pp.5245-5248, 1999.
[30] M. R. Sorensen, K. W. Jacobsen, and P. Stoltze, “Simulations of Atomic-Scale Sliding Friction,” Physical Review B, Vol. 53, No. 4, pp. 2101-2113, 15 January 1996.
[31] H. Rafii-Tabar, “Modelling the Nano-scale Phenomena in Condensed Matter Physics via Computer-based Numerical Simulations,” Physics Reports, 325, pp.239-310, 2000.
[32] T. T. Tsong, “Effects of Electric Field in Atom Manipulations,” Physical Review B 44, 13703, 1991.
[33] Fumihito ARAI, Daisuke ANDO, Toshio FUKUDA, Yukio NONDA, and Tomoya OOTA, “Micro Manipulation Based on Micro Physics-Strategy Based on Attractive Force Reduction and Stress Measurement.” IEEE, pp. 236-241, 1995.
[34] M. Sitti, ”Survey of Nanomanipulation Systems,” IEEE-NANO 2001, S2.2 Nanomanipulation I (Special session).
[35] P. P. Ewald Ann. Phys. (Leipzig) 64, 253, 1921.
[36] David Kofke, “Text of Course CE530,” Department of Chemical Engineering, SUNY Buffalo, 2003.
[37] 張自恭、林奇峰、黃煌文,電腦模擬於薄膜製程之應用,高速計算世界。
[38] R. Biswas, D. R. Hamann, “Simulated Annealing of Silicon Atom Clusters in Langevin Molecular Dynamics,” Physical Rev. B, vol. 34, no. 2, 1986.
[39] W. Eckstein, “Computer Simulation of Ion-Solid Interaction,” Spring-Verlag, 1991.
[40] Dimension 3100 Instruction Manual.
[41] N. Agrait, G. Rubio, and S. Vieira, “Plastic Deformation of Nanometer-Scale Gold Connective Necks,” Physical Review Letters, vol. 74, no.20, 1995.
[42] D. Fujita, Q. Jiang, and H. Nejoh, “Fabrication of Gold Nanostructures on a Vicinal Si(111) 7x7 Surface Using Ultrahigh Vacuum Scanning Tunneling Microscope and a Gold-Coated Tungsten Tip,” J. Vac. Sci. Technol. B 14(6), Nov/Dec, 1996.
[43] C. S. Chang, W. B. Su, and Tien T. Tsong, “Field Evaporation between a Gold Tip and a Gold Surface in the Scanning Tunneling Microscope Configuration,” Physical Review Letters, vol. 72, no.4, 1994.
[44] L. H. Lee, “Fundamentals of Adhesion,” Plenum Press, 1991.