簡易檢索 / 詳目顯示

研究生: 林韋萱
Lin, Wei-Hsuan
論文名稱: 利用被動關節角度與機器學習進行3-UPU型並聯式機構校正
Calibration of a 3-UPU Parallel Mechanism Using Passive Joint Angles and Machine Learning
指導教授: 宋震國
Sung, Cheng-Kuo
口試委員: 邱昱仁
Chiu, Yu-Jen
田孟軒
Tien, Meng-Hsuan
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 96
中文關鍵詞: 並聯式機構3-UPU被動關節機器學習
外文關鍵詞: Parallel Mechanism, 3-UPU, Passive Joint, Machine Learning
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 並聯式機構因具有高剛性、各連桿獨立控制、位置誤差能互相平均等特點,適用於高精度和高效生產需求。然而實際應用仍因加工、組裝、熱效應和機械振動等因素導致誤差產生,使得並聯式機構的標稱幾何形狀和實際幾何形狀之間存在偏差而導致精度下降,為了提高工具機的運動精度和定位能力,對機構進行校正有其重要性。本研究針對 3-UPU 平移式並聯機構,運用基於物理模型和無物理模型的校正方法,透過補償方式使經校正後的模型更貼近實際機械結構。
    本研究為了在有限的量測點數中提高校正的改善率,安裝了輔助感測器(角度編碼器)於被動接頭,同時透過外部量測方法取得端末點的實際位置,並比較了三種不同的校正方式。第一種基於逆向運動學,透過比較端末點的量測值與運動學標準值,識別出誤差參數進行補償,實現校正;第二種方法不依賴物理模型,而是使用人工神經網路(ANN),將端末點的量測值和桿長補償量分別作為輸入及輸出進行訓練;第三種方法在第二種基礎上,增加了輔助感測值作為輸入。為貼近真實機台,建立了一個模擬機台,以全面考慮可能的誤差源。模擬結果顯示,第一種方法不論資料筆數多少校正精度最高僅達到 92%,第二種在 28 筆訓練資料時達到 98%的校正精度,而第三種方法則在 21 筆訓練資料時即達到了 98%的校正精度,且最高能將近99%。三種方法均能有效提高並聯式機構的精度,其中第三種方法透過引入更多感測訊息,取得了最佳的校正效果,證明在少量訓練資料點數下,被動關節對於機器學習校正改善的有效性。


    Parallel kinematic mechanisms (PKMs), known for their high rigidity, independent control of each link, and mutual averaging of position errors, are suitable for applications requiring high precision and production efficiency. However, practical implementations are often affected by factors such as machine tolerance, assembly, thermal effects, and mechanical vibrations, leading to deviations between the nominal and actual geometrics of PKM and subsequent decreases in accuracy. To enhance the motion precision and positioning capability of machine tools, calibration of the mechanism becomes imperative. This study focuses on the translational 3-UPU PKM, employing both model-based and model-free calibration methods to compensate and align the calibrated model with the real mechanical structure.
    To improve the calibration enhancement rate with a limited number of measurement points, auxiliary sensors (angle encoders) were installed on passive joints, and the actual positions of the end effector were obtained through external measurement methods. Three different calibration methods were compared. The first method is based on inverse kinematics, which identifies and compensates for error parameters by comparing the measured values of the end effector with the kinematic standard values, thus achieving calibration. The second method does not rely on a physical model but uses an artificial neural network (ANN), where the measured values of the end effector and the rod length compensation amounts are used as inputs and outputs, respectively, for training. The third method builds on the second method by adding auxiliary sensor values as inputs. To closely replicate a real machine, a simulated machine was established to comprehensively consider possible sources of error. The simulation results indicate that the first method, regardless of the amount of data, achieved a maximum calibration accuracy of only 92%. The second method reached a calibration accuracy of 98% with 28 training data points, while the third method achieved 98% calibration accuracy with only 21 training data points, and a maximum accuracy approaching 99%. All three methods effectively improved the accuracy of the parallel mechanism, with the third method achieving the best calibration results by incorporating more sensor information. This demonstrates the effectiveness of passive joint information in enhancing machine learning calibration with a small number of training data points.

    摘要 -------------------------------------------------I Abstract ---------------------------------------III 致謝辭 -------------------------------------------------V 目錄 ------------------------------------------------VI 符號表 ------------------------------------------------IX 圖表目錄 ------------------------------------------------XI 第1章 導論 -----------------------------------------1 1-1. 研究背景 -----------------------------------------1 1-2. 文獻回顧 -----------------------------------------2 1-2-1. 並聯式機構之發展 -------------------------2 1-2-2. 並聯式機構校正 -------------------------4 1-2-3. 校正參數識別演算法 -----------------8 1-2-4. 人工智慧、機器學習之發展 ----------------10 1-2-5. 基於無模型進行校正方法 ----------------13 1-3. 研究動機與目標 --------------------------------16 1-4. 研究方法及章節分配 ------------------------17 第2章 機構參數定義與運動學模型 ------------------------20 2-1. 構型介紹與自由度分析 ------------------------20 2-2. 座標參數定義 --------------------------------21 2-3. 3-UPU運動學模型 --------------------------------25 2-3-1. 逆向運動學 ------------------------25 2-3-2. 順向運動學 ------------------------26 2-4. 並聯式機構之被動關節 ------------------------27 2-4-1. 被動旋轉角分析 ------------------------27 2-4-2. 被動關節添加輔助角度感測器 --------30 第3章 以運動學方式進行校正過程 ------------------------32 3-1. 校正方式選用 --------------------------------32 3-2. 校正參數定義 --------------------------------32 3-3. 校正過程 ----------------------------------------34 3-3-1. 校正之運動學分析 ------------------------34 3-3-2. 誤差模型 --------------------------------35 3-3-3. 校正程序及其演算法 ----------------36 第4章 機器學習進行校正 --------------------------------40 4-1. 機器學習之類神經網路 ------------------------40 4-1-1. 類神經網路說明 ------------------------40 4-1-2. 訓練原理 --------------------------------42 4-1-3. 超參數調校 ------------------------44 4-1-4. 激勵函數 --------------------------------45 4-1-5. 優化器 --------------------------------47 4-2. 校正之機器學習訓練流程 ------------------------50 4-3. 建立校正模型 --------------------------------53 4-3-1. 類神經網路環境設定與工具選擇 --------53 4-3-2. 人工神經網路(ANN)校正模型 ----------------55 4-3-3. 被動關節資訊添加於ANN之校正模型 --------58 第5章 結果與討論 --------------------------------62 5-1. 研究模擬設定及架構 ------------------------62 5-1-1. 模擬機台建立 ------------------------62 5-1-2. 模擬誤差設定 ------------------------63 5-1-3. 資料集的產生 ------------------------67 5-2. 運動學校正誤差改善預測結果 ----------------68 5-3. 機器學習校正誤差改善預測結果 ----------------72 5-3-1. ANN校正模型結果 ------------------------72 5-3-2. 添加被動關節資訊之ANN模型結果 --------77 5-4. 校正方法比較 --------------------------------82 第6章 結論與未來工作 --------------------------------88 6-1. 結論 ----------------------------------------88 6-2. 本文貢獻 ----------------------------------------90 6-3. 未來工作 ----------------------------------------91 參考文獻 ------------------------------------------------93

    [1] V. E. Gough, "Universal tyre test machine," Proc. FISITA 9th Int. Technical Congr., London, 1962, pp. 117-137, 1962.
    [2] D. Stewart, "A platform with six degrees of freedom," Proceedings of the institution of mechanical engineers, vol. 180, no. 1, pp. 371-386, 1965.
    [3] K. H. Hunt, "Structural kinematics of in-parallel-actuated robot-arms," 1983.
    [4] R. Clavel, "A fast robot with parallel geometry," in Proc. of the Int. Symp. on Industrial Robot, Switzerland, 1988, 1988.
    [5] J.-P. Merlet, "Singular configurations of parallel manipulators and Grassmann geometry," The international journal of robotics research, vol. 8, no. 5, pp. 45-56, 1989.
    [6] "IMTS." https://www.imts.com/imts-plus/index.cfm (accessed.
    [7] B. D. Whittingham et al., "Capabilities of Parallel Link Machine Tools: Preliminary Investigations of the Variax Hexacenter™," in ASME international mechanical engineering congress and exposition, 1998, vol. 16066: American Society of Mechanical Engineers, pp. 663-671.
    [8] "LOXIN." https://loxin2002.com/ (accessed.
    [9] "EXECHON." https://exechon.com/ (accessed.
    [10] L.-W. Tsai, "Systematic enumeration of parallel manipulators," in Parallel kinematic machines: theoretical aspects and industrial requirements: Springer, 1999, pp. 33-49.
    [11] S. Hayati and M. Mirmirani, "Improving the absolute positioning accuracy of robot manipulators," Journal of robotic systems, vol. 2, no. 4, pp. 397-413, 1985.
    [12] B. W. Mooring, Z. S. Roth, and M. R. Driels, Fundamentals of manipulator calibration. Wiley-interscience, 1991.
    [13] P. Last, A. Raatz, and J. Hesselbach, "Calibration of parallel kinematic structures–overview, classification and comparison," Robotic Systems for Handling and Assembly, pp. 93-106, 2011.
    [14] A. Nubiola and I. A. Bonev, "Absolute calibration of an ABB IRB 1600 robot using a laser tracker," Robotics and Computer-Integrated Manufacturing, vol. 29, no. 1, pp. 236-245, 2013.
    [15] T. Sun, Y. Zhai, Y. Song, and J. Zhang, "Kinematic calibration of a 3-DoF rotational parallel manipulator using laser tracker," Robotics and Computer-Integrated Manufacturing, vol. 41, pp. 78-91, 2016, doi: 10.1016/j.rcim.2016.02.008.
    [16] H. Zhuang, O. Masory, and J. Yan, "Kinematic calibration of a Stewart platform using pose measurements obtained by a single theodolite," in Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, 1995, vol. 2: IEEE, pp. 329-334.
    [17] H. Zhuang, K. Wang, and Z. S. Roth, "Simultaneous calibration of a robot and a hand-mounted camera," IEEE Transactions on Robotics and Automation, vol. 11, no. 5, pp. 649-660, 1995.
    [18] G. Legnani, R. Adamini, and F. Jatta, "Calibration of a SCARA Robot By Force-Controlled Contour Tracking of an Object of Known Geometry," in Proceedings of the 32nd ISR (International Symposium on Robotics), 2001, vol. 19, p. 21.
    [19] P. Last, C. Budde, C. Bier, and J. Hesselbach, "Hexa-parallel-structure calibration by means of angular passive joint sensors," in IEEE International Conference Mechatronics and Automation, 2005, 2005, vol. 3: IEEE, pp. 1300-1305.
    [20] P. Last and J. Hesselbach, "A new calibration stategy for a class of parallel mechanisms," in Advances in Robot Kinematics: Mechanisms and Motion: Springer, 2006, pp. 331-338.
    [21] Y. Bai, J. C. Smith, H. Zhuang, and D. Wang, "Calibration of parallel machine tools using fuzzy interpolation method," in 2008 IEEE International Conference on Technologies for Practical Robot Applications, 2008: IEEE, pp. 56-61.
    [22] J. GAO, "Kinetic self-calibration of novel 5 DOF parallel machine tool," Computer Integrated Manufacturing System, vol. 13, no. 04, p. 0, 2007.
    [23] Y. Gan, J. Duan, and X. Dai, "A calibration method of robot kinematic parameters by drawstring displacement sensor," International Journal of Advanced Robotic Systems, vol. 16, no. 5, p. 1729881419883072, 2019.
    [24] C. H. Spiegelman, J. F. Bennett, M. Vannucci, M. J. McShane, and G. L. Cote, "A transparent tool for seemingly difficult calibrations: the parallel calibration method," Analytical chemistry, vol. 72, no. 1, pp. 135-140, 2000.
    [25] Y. Song, J. Zhang, B. Lian, and T. Sun, "Kinematic calibration of a 5-DoF parallel kinematic machine," Precision Engineering, vol. 45, pp. 242-261, 2016.
    [26] M. S. Varziri and L. Notash, "Kinematic calibration of a wire-actuated parallel robot," Mechanism and Machine Theory, vol. 42, no. 8, pp. 960-976, 2007.
    [27] Å. Björck, "Least squares methods," Handbook of numerical analysis, vol. 1, pp. 465-652, 1990.
    [28] A. Ranganathan, "The levenberg-marquardt algorithm," Tutoral on LM algorithm, vol. 11, no. 1, pp. 101-110, 2004.
    [29] S. Mirjalili and S. Mirjalili, "Genetic algorithm," Evolutionary Algorithms and Neural Networks: Theory and Applications, pp. 43-55, 2019.
    [30] Y. Liu, J. Wu, L. Wang, and J. Wang, "Parameter identification algorithm of kinematic calibration in parallel manipulators," Advances in Mechanical Engineering, vol. 8, no. 9, p. 1687814016667908, 2016.
    [31] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, "A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955," AI magazine, vol. 27, no. 4, pp. 12-12, 2006.
    [32] A. L. Samuel, "Some studies in machine learning using the game of checkers," IBM Journal of research and development, vol. 3, no. 3, pp. 210-229, 1959.
    [33] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," nature, vol. 323, no. 6088, pp. 533-536, 1986.
    [34] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, "Support vector machines," IEEE Intelligent Systems and their applications, vol. 13, no. 4, pp. 18-28, 1998.
    [35] T. Hofmann, B. Schölkopf, and A. J. Smola, "Kernel methods in machine learning," 2008.
    [36] G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.
    [37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, vol. 25, 2012.
    [38] D. Dhall, R. Kaur, and M. Juneja, "Machine learning: a review of the algorithms and its applications," Proceedings of ICRIC 2019: Recent innovations in computing, pp. 47-63, 2020.
    [39] Y. Bai, "On the comparison of model-based and modeless robotic calibration based on a fuzzy interpolation method," The International Journal of Advanced Manufacturing Technology, vol. 31, pp. 1243-1250, 2007.
    [40] D. Zhang and Z. Gao, "Optimal Kinematic Calibration of Parallel Manipulators With Pseudoerror Theory and Cooperative Coevolutionary Network," IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3221-3231, 2012, doi: 10.1109/tie.2011.2166229.
    [41] S. Liao, Q. Zeng, K. F. Ehmann, and J. Cao, "Parameter identification and nonparametric calibration of the tri-pyramid robot," IEEE/ASME Transactions on Mechatronics, vol. 25, no. 5, pp. 2309-2317, 2020.
    [42] G. Zhao, P. Zhang, G. Ma, and W. Xiao, "System identification of the nonlinear residual errors of an industrial robot using massive measurements," Robotics and Computer-Integrated Manufacturing, vol. 59, pp. 104-114, 2019.
    [43] 沈乐君. "Levenberg-Marquardt最優化迭代過程." www.shenlejun.cn (accessed.
    [44] "Pytorch Adam." https://pytorch.org/docs/stable/generated/torch.optim.Adam.html (accessed.

    QR CODE