簡易檢索 / 詳目顯示

研究生: 王聖雰
Wang, Sheng-Fen
論文名稱: FocusClear®處理過之生物顯微鏡影像隨深度變化的反疊積
Depth-variant Deconvolution of FocusClear® Processed Biological Microscopic Images
指導教授: 陳永昌
Chen, Yung-Chang
口試委員: 賴尚宏
盧鴻興
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 59
中文關鍵詞: 反疊積生物顯微鏡影像
外文關鍵詞: deconvolution, Biological Microscopic Image
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今,由於顯微鏡的成像技術越來越進步,二維的生物細胞組織取像品質也隨之提升許多。因此,更進一步的目標便是希望能夠將二維的成像推展至三維超解析度,讓整個生物細胞組織的架構可以完整的呈現在我們眼前,並且有利於接下來的分析。
    本研究的目的是跨領域合作以期增加顯微鏡的三維顯微鏡影像解析度。更進一步希望研發出低價卻高解析度的顯微鏡。這個研究方法是利用一疊二維生物細胞組織影像還原成原本立體的生物細胞組織影像。每個二維生物細胞組織影像皆是用共軛焦顯微鏡取像得來的。藉著共軛焦顯微鏡的技術和後續的影像處理,我們期望不只能得到清晰的二維生物細胞組織影像,還能因此重建出原本的三維生物細胞組織影像。
    本篇論文的研究方向著重在如何處理在不同深度上截取的影像,因為在生物組織不同深度上的點擴散方程式(Point Spread Function)是不一樣的,這是由於不同深度上的光線會受不同程度的球面像差問題影響所致。在本篇論文裡,我們修正了原本不受深度影響的點擴散方程式,讓它可以較符合在我們實驗裝置下截取影像的結果,並且用反疊積(Deconvolution)的方法來得到較清晰的影像。在這篇論文裡會介紹如何建立一個可以隨深度變化的點擴散方程式,並且將這個建立好的模型,代入可以隨深度變化用不同的點擴散方程式來做反疊積的方法(Depth-variant Deconvolution),因此得到品質較好的影像。


    Nowadays, 2D image quality of biological tissue has increased drastically because of the progress in image acquisition by microscope. Therefore, 3D superresolution from 2D images is the next aim. If achieved, it can make the structure of the entire biological tissue visualized clearly. Moreover, it is beneficial to the subsequent analysis.
    This research is intended to increase the resolution of 3D microscopy images which is an interdisciplinary project to build up a cheap but high resolution microscope. The method of this work is to recover genuine 3D biological tissue images from stacks of 2D images. Each 2D biological tissue image is made from confocal fluorescence microscope. By this technique and the subsequent image processing, we intend not only to get clear 2D biological tissue images, but also to reconstruct the genuine 3D biological tissue images.
    This research focuses on an algorithm for processing a stack of 2D images captured by the microscope from different depth of focuses. Since the point spread functions suffer from the spherical aberration in our microscope, they are no more space-invariant models. Therefore, the research is focused on how to modify theoretical point spread functions to adapt to our capturing image system and obtain deblurred images by deconvolution. In the research, the mathematical models of depth-variant point spread functions will be formulated. Furthermore, the depth-variant deconvolution algorithm that incorporates the depth-variant point spread functions will be introduced.

    Table of Contents Abstract ii Table of Contents iv List of Figures viii List of Tables ix Chapter 1 Introduction 1 1.1 Overview of 3D Super-Resolution 1 1.2 Motivation 2 1.3 Thesis Organization 3 Chapter 2 Previous Works 4 2.1 3D Super-Resolution 4 2.1.1 Confocal Fluorescent Microscope 4 2.1.2 Rotational Stage 6 2.1.3 Image Stacks with Different Angles 6 2.1.4 Deconvolution 7 2.1.5 Registration 8 2.1.6 Interpolation 9 2.2 3D Convolution Model 10 2.2.1 Image Formation 10 2.2.2 Convolution Model 12 2.3 3D Blind Deconvolution 13 2.3.1 3D Blind Deconvolution Flow Chart 13 2.3.2 Blind Deconvolution 14 2.4 Experimental Results and Discussions 15 2.4.1 Experimental Results 15 2.4.2 Discussions 18 Chapter 3 Depth-variant Point Spread Function 19 3.1 Theoretical PSF 19 3.1.1 Properties 19 3.1.2 Introduction 20 3.2 PSF of Confocal Fluorescence Microscope 21 3.2.1 Properties 22 3.2.2 Mathematical Model and Approximation 22 3.2.3 Problems 25 3.3 Depth-variant PSF of Confocal Fluorescence Microscope 25 3.3.1 Captured Images 26 3.3.2 Properties 27 3.3.3 Mathematical Model 29 3.3.4 Experimental Results 31 Chapter 4 Depth-variant Deconvolution 33 4.1 Blind Deconvolution 33 4.1.1 Flowchart 33 4.1.2 Initial Guess 35 4.1.3 Mathematical Model 35 4.1.4 Point Spread Function Constraints 38 4.2 Depth-variant Deconvolution 40 4.2.1 Flowchart 40 4.2.2 Depth-variant Imaging Model 41 4.2.3 Restoration Algorithm 44 Chapter 5 Experimental Results and Discussions 47 5.1 Simulation Experiment 47 5.1.1 One Object 47 5.1.2 Two Objects 49 5.2 Real Data Experiment 52 5.3 Discussions 54 Chapter 6 Conclusions and Future Works 55 6.1 Conclusions 55 6.2 Future works 56

    [1] T.J. Holmes, “Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach,” Journal of Optical Society of America A, Volume 9, Issue 7, pp. 1052-1061, 1992.
    [2] T.J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. C. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light Microscopic Images Reconstructed by Maximum Likelihood Deconvolution,” Handbook of Biological Confocal Microscope (3rd ed.), Chapter 24, pp. 389-402, 2006.
    [3] T.J. Holmes and N. J. O’connor, “Blind deconvolution of 3D transmitted light brightfield micrographs,” Journal of Microscope, Volume 200, Issue 2, pp. 114-127, 2000.
    [4] Nathan S. Claxton, Thomas J. Fellers, and Michael W. Davidson, ”Laser Scanning Confocal Microscopy,” 2006.
    [5] Bo Zhang, Josiane Zerubia, and Jean-Christophe Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Optical Society of America, 2007.
    [6] Francois Aguet, Dimitri Van De Ville, and Michael Unser, “An accurate model with few parameters fir axially shift-variant deconvolution,” IEEE Biomedical Imaging : From Nano to Marco, 2008.
    [7] M.J. Nasse, S. Huant and J. C. Woehl, “Experimental and theoretical near focus intensity distribution in confocal microscopy,” 2006 Laboratory for Surface Studies Student Summer Symposium, University of Wisconsin-Milwaukee, WI, 2006.
    [8] Chrysanthe Preza and Jose-Angel Conchello,“Image estimation accounting for point-spread function depth variation in three-dimensional fluorescence microscopy,” 3D and Multidimensional Microscopy: Image Acquisition and Processing X, Proc. SPIE, volume 4964, 27, 2003.
    [9] Joshua W. Shaebitz and Daniel A. Fletcher, “Enhanced three-dimensional deconvoluton microscopy using a measured depth-varying point-spread function,” JOSA A, Vol. 24, Issue 9, pp. 2622-2627, 2007.
    [10] Chrysanthe Preza and Jose-Angel Conchello, “Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy,” JOSA A, Vol. 21, No. 9, 2004.
    [11] Praveen PANKAJAKSHAN, Laure BLANC-FERAUD, Bo ZHANG, Zvi KAM, Jean-Christophe OLIVO-MARIN and Josiane ZERUBIA, “Parametric Blind Deconvolution for Confocal Laser Scanning Microscopy (CLSM)-Proof of Concept,” INRIA-00269265, version 2, 2008.
    [12] H. E. Keller, “Handbook of Biological Confocal Microscopy, chapter Objective lenses for confocal microscopy,” pages 111–126. Plenum Press, New York, 2nd edition, 1995.
    [13] S. Hell, G. Reiner, C. Cremer, and E.H.K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microscopy, 169:391–405, 1993.
    [14] James G. McNally, Tatiana Karpova, John Cooper, and Jose Angel Conchello, “3D imaging by Deconvolution Microscopy,” Methods 19, 373-385, 1999.
    [15] Praveen Pankajakshan, “Blind Deconvolution for Confocal Laser Scanning Microscopy,” tel-00474264, version 1, 2010.
    [16] Praveen Pankajakshan, Laure Blanc-Feraud, Zvi Kam and Josiane, “Point-spread Function Retrieval for Fluorescence Microscopy”, INRIA-00395534, version 1, 2009.
    [17] Chrysanthe Preza and Jose-Angel Conchello, “Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy” Volume 21, No.9, JOSAA, 2004
    [18] http://www.optinav.com/Iterative-Deconvolve-3D.htm

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE