研究生: |
張芳瑜 Fang-Yu Chang |
---|---|
論文名稱: |
利用搜尋法求解客服中心人員排班問題 Solving Call Center Agent Shift Scheduling Problem by Search Algorithms |
指導教授: |
洪一峯
Yi-Feng Hung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 客服中心 、人員排班 、多技能 、模擬退火法 、塔布搜尋法 、基因演算法 、變動鄰近解搜尋法 、啟發式演算法 |
外文關鍵詞: | call center, agent shift scheduling, simulated annealing, tabu search, genetic algorithm, variable neighborhood search |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
顧客滿意度的高低對企業來說舉足輕重的影響,它對於一個企業的成功扮演著關鍵的角色。本篇論文探討一二十四小時客服中心之人員排班問題。為了要使顧客的需求達到最大的滿足,我們的目標是要找出一最佳排班表來使所缺乏的人力資源量為最少。
在本篇論文研究中,我們希望能同時考量到客服中心擁有變動需求、每位客服人員所擁有的技能不同且並非唯一、政府相關法規限制的這些現實因素並由啟發式演算法在合理的計算時間內求得一不錯的解。採用四種搜尋法(模擬退火法、塔布搜尋法、基因演算法、變動鄰近解搜尋法)來求解客服中心之人員排班問題。透過建構一線性規劃模型來針對每一個時間區段的技能需求進行人力資源配給使得短缺成本為最小。最後進行電腦模擬實驗來評估應用四種啟發式演算法的績效。結果顯示在本研究問題中,模擬退火法相較於其它方法表現較好。
A customer call center that provides services with high level of customer satisfaction is crucial to a successful modern company. This study solves the agent shift scheduling problem for a 24-hours call center. The objective of our problem is to minimize the shortage of man hour for customer demands of various skills.
Considering time-varying demands, different skills, and various regulations, this study uses meta-heuristic algorithms to find near optimal solutions within a reasonable computation time. There are four algorithms (simulated annealing, tabu search, genetic algorithm, and variable neighborhood search) used to solve the combinatorial decision part of the agent scheduling problem. To compute the minimized shortage costs, each of the four algorithms uses a linear programming formulation to allocate man hours to the requirement of various skills. To compare the performance of these four algorithms, computational experiments are conducted. The results show that simulated annealing performs significantly better than the other algorithms in almost all the tested problems.
Lin, S.C. (2003), “Constraint programming models for 7 24 service agent scheduling problem: a case of call center application”, Institute of Transportation Technology and Management.
Atlason, J. and Epelman, M.A. and Henderson, S.G. (2004), “Call center staffing with simulation and cutting plane methods”, Annals of Operations Research, Vol. 127, pp.333-358.
Aykin , T. (1996), “Optimal shift scheduling with multiple break windows”, Management Science, Vol. 42, No.4, pp. 591-602.
Aykin , T. (1998), “A composite branch and cut algorithm for optimal shift scheduling with multiple breaks and break windows”, The Journal of the Operational Research Society, Vol. 49, No.6, pp. 603-615.
Bailey, J. (1985), “Integrated days off and shift personnel scheduling”, Computers and Industrial Engineering, Vol. 9, No.4, pp. 395-404.
Bard , J.F. and Binici, C. and deSilva, A.H. (2003), “Staff scheduling at the united states postal service”, Computers and Operations Research, Vol.30, pp. 745–771.
Beasley , J.E. and Cao, B. (1996), “A tree search algorithm for the crew scheduling problem”, European Journal of Operational Research, Vol. 94, pp. 517-526.
Brusco, M.J., Jacobs, L.W. (1993), “A simulated annealing approach to the cyclic staff-scheduling problem”, Naval Research Logistics, Vol. 40, No. 1, pp. 69-84.
Burns, R.N. and Carter, M.W. (1985), “Work force size and single shift schedules with variable demands”, Management Science, Vol. 31, No. 5, pp. 599.
Cai , X. and Li, K.N. (2000), “A genetic algorithm for scheduling staff of mixed skills under multi-criteria”, European Journal of Operational Research, Vol.125, pp.359-369.
Cezik, M.T. and L’Ecuyer, P. (2006), “Staffing multiskill call centers via linear programming and simulation”, Management Science 53. To appear.
Cheng, B.M.W. and Lee, J.H.M. and Wu, J.C.K. (1997), “A nurse rostering system using constraint programming and redundant modeling”, IEEE Transactions on, 1997, Vol. 1, No. 1, pp. 1089-7771.
Cheng, R. and Gen, M. (1997), “Parallel machine scheduling problems using memetic algorithms”, Computers and Industrial Engineering, Vol. 33, No. 3-4, pp.761-764.
CPLEX, Reference Manual. ILOG Optimozation, 2001.
Dantzig, G.B. (1954), “A comment on Edie’s traffic delays at toll booths”, Operation Research, Vol.2 , pp.339-341.
Darmoni, S.J. and Fajner, A. and Mahé, N. and Vondracek, M. and Stelian, O. and Baldenweck, M. (1995), “Horoplan: computer-assisted nurse scheduling using constraint-based programming”, Journal of the Society for Health Systems, Vol. 5, No. 1, pp. 41-54.
Easton, F.F., Mansour, N. (1993), “A distributed genetic algorithm for employee staffing and scheduling problems”, In Proceedings of the 5th International Conference on Genetic Algorithms, pp.360–367.
Eitzen , G. and Panton, D. (2004), “Multi-skilled workforce optimisation”, Annals of Operations Research, Vol.127, pp.359–372.
Glover , F. (1977), “Heuristics for integer programming using surrogate constraints”, Decision Science, Vol.8, No. 1, pp.156–166.
Henderson, W.B. and Berry, W.L. (1976), “Heuristic methods for telephone operator shift scheduling: an experimental analysis”, Management Science, Vol. 22, No. 12, pp. 1372-1380.
Higgins, P.G.. (1998), “Extending cognitive work analysis to manufacturing scheduling”, Computer Human Interaction Conference, Adelaide, SA, 29 November-December, pp. 236-243.
Holland, J.H. (1975), “Adaptation in natural and artificial systems”, University of Michigan Press.(Second edition: MIT Press, 1992)
Jarrah, A.I. and Bard, J.F. and deSilva, A.H. (1994), “Solving large-scale tour scheduling problem”, Management Science, Vol. 40, No. 9, pp. 1124-1144.
Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), “Optimization by simulated annealing”, Science, Vol. 200, No. 4598, pp. 671-680.
Koole, G and Sluis, E.V.D. (2003), “Optimal shift scheduling with a global service level constraint”, IIE Transactions , Vol. 35, pp. 1049–1055.
Mabert , V.A. and Watts, C.A. (1982), “A simulation analysis of tour-shift construction procedures”, Management Science, Vol. 28, No. 5, pp. 520-532.
Mehrotra, A. and Murphy, K.E. and Trick, M.A. (2000), “Optimal shift scheduling: a branch-and-price approach”, Naval Research Logistics, Vol. 47, No.3, pp. 185-200.
Metropolis. N, Rosenbluth, A.W. and Teller, A.H. (1953), “Equation of state calculations by fast computing machines”, Journal of Chemistry Physics, Vol.21, pp.1087-1092.
Mladenovi’c, N. (1995), “A variable neighborhood algorithm—a new metaheuristic for combinatorial optimization”, Abstracts of Papers Presented at Optimization Days, Montreal, pp. 112.
Nakasuka, S., Yoshida, T. (1992),”Distributed manufacturing scheduling using intelligent agents”, International Journal of Production Research, Vol. 30, No.2, pp. 411-431.
Segal, M. (1974), “The operator-scheduling problem: a network-flow approach”, Operations Research, Vol. 22, No. 4, pp.808-823.
Srinivas, M., Patnaik, L.M. (1994), “Adaptive probabilities of crossover and mutation in geneticalgorithms”, Systems, Man and Cybernetics, IEEE Transactions on, 1994, Vol. 24, No.4, pp. 656-667.
Thompson, G.M. (1997), “Assigning telephone operators to shifts at new brunswick telephone company”, Interface, Vol. 27, No. 4, pp. 1-11.
Topaloglu, S. and Ozkarahan, I. (2002), “Implicit optimal tour scheduling with flexible break assignments”, Computers and Industrial Engineering, Vol.44, pp. 75-89.