研究生: |
賈侃融 Kan-Jung Chia |
---|---|
論文名稱: |
利用固相微萃取及液相微萃取法分析超微量有機物質之研究 Analysis of trace organic pollutants based on a solid-phase microextraction and liquid-phase microextraction technique |
指導教授: |
黃賢達
Shang-Da Huang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 173 |
中文關鍵詞: | 微量分析 、固相微萃取 、液相微萃取 、溶劑棒微萃取 、單滴微萃取 、氣相層析 、質譜儀 、戴奧辛 、安非他命 、有機氯 、化學衍生 、中空纖維 |
外文關鍵詞: | Trace Analysis, Solid-Phase Microextraction, Liquid-Phase Microextraction, Solvent Bar Microextraction, Single-Drop Microextraction, Gas-Chromatography, Mass Spectrometer, Dioxins, Amphetamine, Organochlorine, Chemical Derivatization, Hollow Fiber |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來在化學分析方法上,強調快速、簡便與環保的分析技術,傳統的液液相萃取法或固相萃取法等,對於分析環境中之微量污染物有著花費大量時間或有機溶劑的缺點。因此本論文的研究動機是發展兩套分析方法,一為改良式的固相微萃取技術、一為液相微萃取技術,配合氣相層析質譜儀之分析方法,並將其運用在自然界中超微量有機物之測定。 以下為各章節的主題與概要說明。
第一章為緒論,說明在發展經濟同時環境保護的重要性,提出本論文研究之目的,並介紹各章節中運用之分析技術的原理與特性。
第二章為利用改良式的固相微萃取法分析土壤中之戴奧辛。研究中探討一般的固相微萃取裝置,在萃取受污染土壤中之戴奧辛時會遭遇到的問題,而利用本實驗之改良裝置可以加以克服。文中說明了利用自行設計的冷卻系統結合固相微萃取裝置,配合超音波震盪樣品,可將與土壤結合強的戴奧辛化合物揮發至樣品瓶中頂空部分,再以吸附纖維萃取後,以串聯質譜技術分析。與文獻之分析戴奧辛方法比較,樣品分析時間由24小時縮減為2小時,可大幅降低人力與時間的耗費。
第三章為同步衍生-萃取的固相微萃取技術應用在人體尿液中的安非他命類藥物之分析。研究中說明一般分析濫用藥物的萃取方法,並討論本研究開發出之同時衍生/萃取的實驗裝置所達到的良好結果,除了分析時間的縮短,方法的簡便與靈敏度的提升外,並探討各項萃取參數之最佳化條件,與此技術之實際應用性,顯示可分析尿液中超微量濃度之濫用藥物。
第四章之內容為化學衍生法結合液相微萃取技術,並應用於水溶液樣品中微量一級胺之分析。液相微萃取法是近年來新興的一種樣品前處理方法,萃取相為微量有機溶劑,相較於商業化固相微萃取之吸附纖維的價格低廉許多,同時也具有樣品前濃縮的效果,為一十分快速簡便之前處理方法。研究中探討中空液相微萃取法的最佳化參數,並與單滴微萃取法加以比較。
第五章之內容是開發溶劑棒微萃取技術與其應用。溶劑棒微萃取法是2004年發表的一項萃取技術,利用聚丙烯材質的中空纖維包覆溶劑形成一「溶劑棒」,與水溶液樣品一起攪動達成萃取。本研究中討論了各項最佳化參數,以及應用在酒類樣品中有機氯農藥的分析。
第六章則將上述開發的數種分析方法做簡單的整理,並展望未來分析技術可能的進展與應用。
The development of faster, simpler and economic sample-preparation techniques is an important issue in chemical analysis. In this work, four analytical methods based on solid-phase microextraction and liquid-phase microextraction were described. The developed methods have been applied to the analysis of trace organic pollutants in different sample matrices such as soil, human urine or wine.
Solid-phase microextraction (SPME), discovered and developed by Pawliszyn and co-workers, has emerged as a versatile solvent-free alternative to conventional liquid–liquid extraction and solid-phase extraction procedures. It involves the partitioning of analytes between the fiber coating and the sample matrix. The first topic describes the development of HS-SPME technique by cooling the headspace where the fiber is suspended, and heating / ultrasonic activated of the sample area simultaneously. It was applied to the screening of soil sample by high contamination with dioxins. Second topic describes the development of SPME technique where the extraction and derivatization were carried out in one step. In this work, the glass insert containing the derivatizing reagent was introduced into the sample vial so that the fiber can absorb the reagents and analytes at the same time. This technique was applied to the analysis of amphetamine-like drugs in urine sample from abusers.
Liquid-phase microextraction (LPME) methods, which included the sing-drop microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME), and solvent bar microextraction (SBME) were investigated in the chapter four and chapter five. This methodology proved to be an extremely simple, low cost and virtually solvent-free sample-preparation technique, which provided a high degree of selectivity and enrichment with the partitioning of analytes in organic and aqueous phase. The results show that these sample-preparation techniques coupled with mass spectrometric detection could determinate the trace organic pollutants in the low ppb or ppt level.
[1] B. J. Danzo, The effects of environmental hormones on reproduction, Cell. Mol. Life Sci. 1998, 54, 1249
[2] 凌永健, 環境荷爾蒙的化學分析, 環境檢驗通訊雜誌 2000, 32, 2. (http://www.niea.gov.tw/analysis/publish/month/32/32th2-2.htm)
[3] C.L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem. 1990, 62, 2145.
[4] C.L. Arthur, L.M. Killam, S. Motlagh, M. Lim, D.W. Potter, J. Pawliszyn, Analysis of substituted benzene compounds in groundwater using solid-phase microextraction, Environ. Sci. Technol. 1992, 26, 979.
[5] E. Baltussen, P. Sandra, F. David, C. Cramers, Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles, J. Microcolumn Sep. 1999, 11, 737.
[6] Y. He, H. K. Lee, Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe, Anal. Chem. 1997, 69, 4634.
[7] Y. Wang, Y. C. Kwok, Y. He, H. K. Lee, Application of dynamic liquid-phase microextraction to the analysis of chlorobenzenes in water using a conventional microsyringe, Anal. Chem. 1998, 70, 4610.
[8] U.S. Environmental Protection Agency, Compendium of methods for the determination of toxic organic compounds in ambient air, Second Edition, Compendium method TO-9A, Determination of polychlorinated, polybrominated and brominated/chlorinated dibenzo-p-dioxins and dibenzofurans in ambient air, EPA/625/R-96/010b
[9] J. T. Liu, K. Hara, S. Kashimura, M. Kashiwagi, M. Kageura, New method of derivatization and headspace solid-phase microextraction for gas chromatographic-mass spectrometric analysis of amphetamines in hair, J. Chromatogr. B 2001, 758, 95.
[10] L. Geiser, S. Cherkaoui,J.-L. Veuthey, Simultaneous analysis of some amphetamine derivatives in urine by nonaqueous capillary electrophoresis coupled to electrospray ionization mass spectrometry, J. Chromatogr. A 2000, 895, 111.
[11] L. Skendera, V. Karačić, I. Brčić, A. Bagarić, Quantitative determination of amphetamines, cocaine, and opiates in human hair by gas chromatography/mass spectrometry, Forensic Sci. Int. 2002,125 120.
[12] R. Kronstrand , I. Nystrom, J. Strandberg, Screening for drugs of abuse in hair with ion spray LC–MS–MS, Forensic Sci. Int. 2004, 145, 183.
[13] M.-R. Lee, Y.-S. Song, B.-H. Hwang, C.-C. Chou, Determination of amphetamine and methamphetamine in serum via headspace derivatization solid-phase microextraction–gas chromatography–mass spectrometry, J. Chromatogr. A 2000, 896, 267.
[14] J. Wu, H. Lord, J. Pawliszyn, Determination of stimulants in human urine and hair samples by polypyrrole coated capillary in-tube solid phase microextraction coupled with liquid chromatography-electrospray mass spectrometry, Talanta 2001, 54, 655.
[15] N. Raikos, K. Christopoulou, G. Theodoridis, H. Tsoukali, D. Psaroulis, Determination of amphetamines in human urine by headspace solid-phase microextraction and gas chromatography, J. Chromatogr. B 2003, 789, 59.
[16] C. Jurado, M.P. Gimenez, T. Soriano, M. Menendez, M. Repetto, Rapid analysis of amphetamine, methamphetamine, MDA, and MDMA in urine using solid-phase microextraction, direct on-fiber derivatization, and analysis by GC-MS, J. Anal. Toxicol. 2000, 24, 11.
[17] G. Shen, H. K. Lee, Hollow fiber-protected liquid-phase microextraction of triazine herbicides, Anal. Chem. 2002, 74, 648.
[18] L. Zhao, H. K. Lee, Liquid-phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass spectrometry, Anal. Chem. 2002, 74, 2486.
[19] X. Jiang, H. K. Lee, Solvent bar microextraction, Anal. Chem. 2004, 76, 5591.
[20] H. Kataoka, H. L. Lord, J. Pawliszyn, Applications of solid-phase microextraction in food analysis, J. Chromatogr. A 2000, 880, 35.
[21] G. L. Hook, G. Kimm, D. Koch, P. B. Savage, B .W. Ding, P. A. Smith, Detection of VX contamination in soil through solid-phase microextraction sampling and gas chromatography/mass spectrometry of the VX degradation product bis(diisopropylaminoethyl)disulfide, J. Chromatogr. A 2003, 992, 1.
[22] L. J. Krutz, S. A. Senseman, A. S. Sciumbato, Solid-phase microextraction for herbicide determination in environmental samples, J. Chromatogr. A 2003, 999, 103.
[23] S. Vichi, A. I. Castellote, L. Pizzale, L. S. Conte, S. Buxaderas, E. Lopez-Tamames, Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection, J. Chromatogr. A 2003, 983, 19.
[24] D. A. Lambropoulou, T. A. Albanis, Headspace solid-phase microextraction in combination with gas chromatography-mass spectrometry for the rapid screening of organophosphorus insecticide residues in strawberries and cherries, J. Chromatogr. A 2003, 993, 197.
[25] J. T. Liu, K. Hara, S. Kashimura, M. Kashiwagi, T. Hamanaka, A. Miyoshi, M. Kageura, Headspace solid-phase microextraction and gas chromatographic-mass spectrometric screening for volatile hydrocarbons in blood, J. Chromatogr. B 2000, 748, 401.
[26] M. Satterfield, D. M. Black, J. S. Brodbelt, Detection of the isoflavone aglycones genistein and daidzein in urine using solid-phase microextraction-high-performance liquid chromatography-electrospray ionization mass spectrometry, J. Chromatogr. B 2001, 759, 33.
[27] T. Kusakabe, T. Saito, S. Takeichi, Solid-phase microextraction and gas chromatography-mass spectrometry analysis of p,p '-DDE in biological samples, J. Chromatogr. B 2001, 761, 93.
[28] M. A. Jeannot, F. F. Cantwell, Solvent microextraction into a single drop, Anal. Chem. 1996, 68, 2236.
[29] M. A. Jeannot, F. F. Cantwell, Solvent microextraction as a speciation tool: Determination of free progesterone in a protein solution, Anal. Chem. 1997, 69, 2935.
[30] M. Ma, F. F. Cantwell, Solvent microextraction with simultaneous back-extraction for sample cleanup and preconcentration: quantitative extraction, Anal. Chem. 1998, 70, 3912.
[31] M. Ma, F. F. Cantwell, Solvent microextraction with simultaneous back-extraction for sample cleanup and preconcentration: preconcentration into a single microdrop, Anal. Chem. 1999, 71, 388.
[32] H. G. Ugland, M. Krogh, K. E. Rasmussen, Liquid-phase microextraction as a sample preparation technique prior to capillary gas chromatographic
-determination of benzodiazepines in biological matrices, J. Chromatogr. B 2000, 749, 85.
[33] S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-phase microextraction and capillary electrophoresis of acidic drugs, Electrophoresis 2000, 21, 579.
[34] T. G. Halvorsen, S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-phase microextraction and capillary electrophoresis of citalopram, an antidepressant drug, J. Chromatogr. A 2001, 909, 87.
[35] S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis, Anal. Chem. 1999, 71, 2650.
[36] L. Zhu, L. Zhu, H. K. Lee, Liquid–liquid–liquid microextraction of nitrophenols with a hollow fiber membrane prior to capillary liquid chromatography, J. Chromatogr. A 2001, 924, 407.
[37] D. A. Lambropoulou, T. A. Albanis, Sensitive trace enrichment of environmental andiandrogen vinclozolin from natural waters and sediment samples using hollow-fiber, J. Chromatogr. A 2004, 1061, 11.
[38] J. B. Quintana, R. Rodil, T. Reemtsma, Suitability of hollow fibre liquid-phase microextraction for the determination of acidic pharmaceuticals in wastewater by liquid chromatography-electrospray tandem mass spectrometry without matrix effects, J. Chromatogr. A 2004, 1061, 19.
[39] L. Hou, H. K. Lee, Determination of pesticides in soil by liquid-phase microextraction and gas chromatography-mass spectrometry, J. Chromatogr. A 2004, 1038, 37.
[40] R. S. Zhao, W. J. Lao, X. B. Xu, Headspace liquid-phase microextraction of trihalomethanes in drinking water and their gas chromatographic determination, Talanta 2004, 62, 751.
[41] S. W. Myung, S. H. Yoon, M. Kim, Analysis of benzene ethylamine derivatives in urine using the programmable dynamic liquid-phase microextraction (LPME) device, Analyst 2003, 128, 1443.
[42] T. Kuuranne, T. Kotiaho, S. Pedersen-Bjergaard, K. E. Rasmussen, A. Leinonen, S. Westwood, R. Kostiainen, Feasibility of a liquid-phase microextraction sample clean-up and liquid chromatographic/mass spectrometric screening method for selected anabolic steroid glucuronides in biological samples, J. Mass Spectrom. 2003, 38, 16.
[43] S. Pedersen-Bjergaard, K. E. Rasmussen, Bioanalysis of drugs by liquid-phase microextraction coupled to separation techniques, J. Chromatogr. B 2005, 817, 3.
[44] 凌永健, 李茂榮等, 質譜分析專輯, 國科會精密儀器發展中心, 1992.
[45] 黃忠智, 氣相層析/離子阱串聯質譜儀, 科儀新知 1995, 17, 42.
[46] 凌永健, 質譜儀, 科儀新知 1997, 19, 31.
[47] Varian Associates, Inc. Saturn 2000 Advanced MS Techniques, 1996.
[48] C. Y. Hao, R. E. March, A survey of recent research activity in quadrupole ion trap mass spectrometry, Int. J. Mass Spectrom. 2001, 212, 337.
[49] U.S. Environmental Protection Agency, Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds, Part I: Estimating Exposure to Dioxin-Like Compounds, Volume 2: Sources of Dioxin-Like Compounds in the United States, September 2000, EPA/600/P-00/001Bb.
[50] 行政院環境保護署, 建立台灣地區戴奧辛排放清冊及排放資料庫計畫, EPA-90-FA12-03-A158.
[51] U.S. Environmental Protection Agency, Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds, Part I: Estimating Exposure to Dioxin-Like Compounds, Volume 3: Properties, Environmental Levels, and Background Exposures, September 2000, EPA/600/P-00/001Bc.
[52] A.F. Badawi, E.L. Cavalieri, E.G. Rogan, Effect of chlorinated hydrocarbons on expression of cytochrome P450 1A1, 1A2 and 1B1 and 2-and 4-hydroxylation of 17 beta-estradiol in female Sprague-Dawley rats, Carcinogenesis 2000, 21, 1593.
[53] IARC, Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans, Intertional Agency for Research on Cancer, Lyon, Monograph vol. 69, 1997.
[54] C.W. Huang, H. Miyata, J.R. Liu, S. Ohta, T. Chang, T. Kashimoto, Levels of PCBs, PCDDs and PCDFs in soil samples from incineration sites for metal reclamation in Taiwan, Chemosphere 1992, 24, 1669.
[55] S.B. Singh, G. Kulshrestha, Gas chromatography analysis of polychlorinated dibenzo-p-dioxins and dibenzofurans, J. Chromatogr. A 1997, 774, 97.
[56] B. D. Eitzer, Polychlorinated dibenzo-p-dioxins and dibenzofurans in raw milk samples from farms located near a new resource recovery incinerator, Chemosphere 1995, 30, 1237.
[57] E. Abad, J. Caixach, J. Rivera, Application of DB-5ms gas chromatography column for the complete assignment of 2,3,7,8-substituted polychlorodibenzo-p-dioxins and polychlorodibenzofurans in samples from municipal waste incinerator emissions, J. Chromatogr. A 1997, 786, 125.
[58] E. Abad, J. Caixach, J. Rivera, Evaluation of a new automated cleanup system for the analysis ofpolychlorinated dibenzo-p-dioxins and dibenzofurans in environmental samples, J. Chromatogr. A 2000, 893, 383.
[59] B. E. Richter, J. L. Ezzell, D. E. Knowles, F. Hoefler, Extraction of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from environmental samples using accelerated solvent extraction (ASE), Chemosphere 1997, 34, 975.
[60] P. Popp, P. Keil, M. Möder, A. Paschke, U. Thuss, Application of accelerated solvent extraction followed by gas chromatography, high-performance liquid chromatography and gas chromatography–mass spectrometry for the determination of polycyclic aromatic hydrocarbons, chlorinated pesticides and polychlorinated dibenzo-p-dioxins and dibenzofurans in solid wastes, J. Chromatogr. A 1997, 774, 203.
[61] H. Bautz, J. Polzer, L. Stieglitz, Comparison of pressurised liquid extraction with Soxhlet extraction for the analysis of polychlorinated dibenzo-p-dioxins and dibenzofurans from fly ash and environmental matrices, J. Chromatogr. A 1998, 815, 231.
[62] I. Windal, G. Eppe, A. C. Gridelet, E. D. Pauw, Supercritical fluid extraction of polychlorinated dibenzo-p-dioxins from fly ash: the importance of fly ash origin and composition on extraction efficiency, J. Chromatogr. A 1998, 819, 187.
[63] M. Mannila, J. Koistinen, T. Vartiaiene, Development of supercritical fluid extraction with a solid-phase trapping for fast estimation of toxic load of polychlorinated dibenzo-p-dioxins-dibenzofurans in sawmill soil, J. Chromatogr. A 2002, 975, 189.
[64] S. Aguerre, C. Pécheyran, G. Lespes, E. Krupp, O. F. X. Donard, M. Potin-Gautier, Optimisation of the hyphenation between solid-phase microextraction, capillary gas chromatography and inductively coupled plasma atomic emission spectrometry for the routine speciation of organotin compounds in the environment, J. Anal. Atom. Spectrom. 2001, 16, 1429.
[65] Z. Meste, R. E. Sturgeon, Detection of volatile organometal chloride species in model atmosphere above seawater and sediment, Environ. Sci. Technol. 2002, 36, 1198.
[66] G. Shen, H. K. Lee, Determination of triazines in soil by microwave-assisted extraction followed by solid-phase microextraction and gas chromatography–mass spectrometry, J. Chromatogr. A 2003, 985, 167.
[67] P. Landín, M. Llompart, M. Lourido, C. Carcía-Jares, N. Carro, R. Cela, Rapid determination of 2,3,7,8-tetrachlorodibenzo-p-dioxin in water samples by using solid-phase microextraction followed by gas chromatography with tandem mass spectrometry, J. AOAC Int. 2003, 86, 44.
[68] http://www.erowid.org/chemicals/amphetamines/amphetamines.shtml
[69] http://www.erowid.org/chemicals/meth/meth.shtml
[70] http://www.erowid.org/chemicals/mdma/mdma.shtml
[71] http://www.erowid.org/chemicals/mda/mda.shtml
[72] H. Lord, J. Pawliszyn, Microextraction of drugs, J. Chromatogr. A 2000, 902, 17.
[73] S. Ulrich, Solid-phase microextraction in biomedical analysis, J. Chromatogr. A 2000, 902, 167.
[74] N. Nagasawa, M. Yashiki, Y. Iwasaki, K. Hara and T. Kojima, Simple and simultaneous analysis of fenfluramine, amphetamine and methamphetamine in whole blood by gas chromatography–mass spectrometry after headspace–solid phase microextraction and derivatization, Forensic Sci. Int. 2000, 109, 215.
[75] A. Namera, M. Yashiki, J. Liu, K. Okajima, K. Hara, T. Imamura, T. Kojima, Rapid analysis of amphetamines in blood using head space-solid phase microextraction and selected ion monitoring, Forensic Sci. Int. 1996, 78, 95.
[76] L. Skender, V. Karacic, I. Brcic, A. Bagaric, Quantitative determination of amphetamines, cocaine, and opiates in human hair by gas chromatography/mass spectrometry, Forensic Sci. Int. 2002, 125, 120.
[77] F. Sporkert, F. Pragst, R. Bachus, F. Masuhr, L. Harms, Determination of cathinone, cathine and norephedrine in hair of Yemenite khat chewers Forensic Sci. Int. 2003, 133, 39.
[78] A. Kankaanpää , T. Gunnar, K. Ariniemi, P. Lillsunde, S. Mykkänen, T. Seppälä, Single-step procedure for gas chromatography–mass spectrometry screening and quantitative determination of amphetamine-type stimulants and related drugs in blood, serum, oral fluid and urine samples, J. Chromatogr. B 2004, 810, 57.
[79] E. L. Thackston, D. J. Wilson, J. S. Hanson, D. L. Miller, Lead removal with adsorbing colloid flotation, J. Water Pollut control Fed., 1980, 52, 317.
[80] 衛生署管制藥品管理局,http://www.nbcd.gov.tw/exm/exm-4.asp。
[81] M.J. Avery, G.A. Junk, Gas chromatography/mass spectrometry determination of water-soluble primary amines as their pentafluorobenzaldehyde imines, Anal. Chem. 1985, 57, 790.
[82] H. Kataoka, Derivatization reactions for the determination of amines by gas chromatography and their applications in environmental analysis, J. Chromatogr. A 1996, 733, 19.
[83] L. Pan, M. Chong, J. Pawliszyn, Determination of amines in air and water using derivatization combined with solid-phase microextraction, J. Chromatogr. A 1997, 773, 249.
[84] M.C. López-Blanco, S. Blanco-Cid, B. Cancho-Grande, J. Simal-Gándara, A pplication of single-drop microextraction and comparison with solid-phase microextraction and solid-phase extraction for the determination of a- and b-endosulfan in water samples by gas chromatography–electron-capture detection, J. Chromatogr. A 2003, 984, 245.
[85] M. Palit, D. Pardasani, A.K. Gupta, D.K. Dubey, Application of single drop microextraction for analysis of chemical warfare agents and related compounds in water by gas chromatography/mass spectrometry, Anal. Chem. 2005, 77, 711.
[86] C. Basheer, H.K. Lee, J.P. Obbard, Application of liquid-phase microextraction and gas chromatography–mass spectrometry for the determination of polychlorinated biphenyls in blood plasma, J. Chromatogr. A 2004, 1022, 161.
[87] U.S. Environmental Protection Agency, Health Effects Support Document for Aldrin/Dieldrin, EPA/822/R-03/001.
[88] 行政院衛生署,「殘留農藥安全允許量」,衛署食字第0940403066號。
[89] European Commission DG Environment, UK department of the Environment Transport and the Regions, Compilation of EU Dioxin Exposure and Health Data Summary Report, October 1999.
[90] H.G. Ugland, M. Krogh, K.E. Rasmussen, Aqueous alkylchloroformate derivatisation and solid-phase microextraction: determination of amphetamines in urine by capillary gas chromatography, J. Chromatogr. B 1997, 701, 29.
[91] L. Pan, M. Adams, J. Pawliszyn, Determination of fatty acids using solid-phase microextraction, Anal. Chem. 1995, 67, 4396.
[92] M.K. Huang, C.R. Liu, S.D. Huang, One step and highly sensitive headspace solid-phase microextraction sample preparation approach for the analysis of methamphetamine and amphetamine in human urine, Analyst 2002, 127, 1203.
[93] L. Hou, H.K. Lee, Dynamic three-phase microextraction as a sample preparation technique prior to capillary electrophoresis, Anal. Chem. 2003, 75, 2784.
[94] M. Pujadas, S. Pichina, S. Poudevida, E. Menoyo, P. Zuccaro, M. Farré, R. de la Torre, Development and validation of a gas chromatography-mass spectrometry assay for hair analysis of amphetamine, methamphetamine and methylenedioxy derivatives, J. Chromatogr. B 2003, 798, 249.
[95] T.Y. Wu, M.R. Fuh, Determination of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxyethyl-
amphetamine, and 3,4-methylenedioxymethamphetamine in urine by online solid-phase extraction and ion-pairing liquid chromatography with detection by electrospray tandem mass spectrometry, Rapid Commun. Mass Spectrom. 2005, 19, 775.
[96] C. Cháfer-Pericás, P. Campíns-Falcó, and R. Herráez-Hernández, Application of solid-phase microextraction combined with derivatization to the determination of amphetamines by liquid chromatography, Anal. Biochem. 2004, 333, 328.
[97] L. Geiser, S. Cherkaoui, J.L. Veuthey, Simultaneous analysis of some amphetamine derivatives in urine by nonaqueous capillary electrophoresis coupled to electrospray ionization mass spectrometry, J. Chromatogr. A 2000, 895, 111.
[98] L. Pan, J.M. Chong, J. Pawliszyn, Determination of amines in air and water using derivatization combined with solid-phase microextraction, J. Chromatogr. A 1997, 773, 249.
[99] Y.M. Martinez, C.M. Legua, P.C. Falcó, Analysis of primary aliphatic short-chain monoamines by LC in water samples, Talanta 2004, 62, 373.
[100] O.S. Fatoki, R.O. Awofolu, Methods for selective determination of persistent organochlorine pesticide residues in water and sediments by capillary gas chromatography and electron-capture detection, J. Chromatogr. A 2003, 983, 225.
[101] M. Barriada-Pereira, M.J. González-Castro, S. Muniategui-Lorenzo, P. López-Mahía, D. Prada-Rodríguez, E. Fernández-Fernández, Determination of 21 organochlorine pesticides in tree leaves using solid-phase extraction clean-up cartridges, J. Chromatogr. A 2004, 1061, 133.
[102] L. Cai, J. Xing, L. Dong, C. Wu, Application of polyphenyl-
methylsiloxane coated fiber for solid-phase microextraction combined with microwave-assisted extraction for the determination of organochlorine pesticides in Chinese teas, J. Chromatogr. A 2003, 1015, 11.
[103] C. Basheer, R. Balasubramanian, H.K. Lee, Determination of organic micropollutants in rainwater using hollow fiber membrane/liquid-
phase microextraction combined with gas chromatography–mass spectrometry, J. Chromatogr. A 2003, 1016, 11.
[104] F. Lai, S.C. Khojasteh-Bakht, Automated online liquid chromatographic/mass spectrometric metabolic study for prodrug stability, J. Chromatogr. B 2005, 814, 225.
[105] V.S. Ong, K.L. Cook, C.M. Kosara, W.F. Brubaker, Quantitative bioanalysis: an integrated approach for drug discovery and development, Int. J. Mass Spectrom. 2004, 238, 139.
[106] J. Zhang, T. Su, H.K. Lee, Headspace water-based liquid-phase microextraction, Anal. Chem. 2005, 77, 1988.
[107] S.W. Myung, S.H. Yoon, M. Kim, Analysis of benzene ethylamine derivatives in urine using the programmable dynamic liquid-phase microextraction (LPME) device, Analyst 2003, 128, 1443.
[108] J.B. Quintanaa, R. Rodil, T. Reemtsma, Suitability of hollow fibre liquid-phase microextraction for the determination of acidic pharmaceuticals in wastewater by liquid chromatography–
electrospray tandem mass spectrometry without matrix effects, J. Chromatogr. A 2004, 1061, 19.
[109] T.S. Ho, T.G. Halvorsen, S. Pedersen-Bjergaard, K.E. Rasmussen, Liquid-phase microextraction of hydrophilic drugs by carrier-
mediated transport, J. Chromatogr. A 2003, 998, 61.