簡易檢索 / 詳目顯示

研究生: 陳昶宏
Chen, Chang Hung
論文名稱: 具穿孔導線之高分子薄膜堆疊製程於撓性溫度感測陣列之應用
3D-Via Polymer Deposition Process for Flexible Temperature Sensor Array and Heterogeneous Integration
指導教授: 方維倫
Fang, Weileun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 120
中文關鍵詞: 撓性元件垂直型導線感測陣列異質整合
外文關鍵詞: flexible sensor, through via, sensor array, heterogeneous integration
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以往的撓性元件開發屬二維之線路架構,但於高密度整合或感測陣列式之設計時,其複雜的電路繞線勢必成為一大問題;為解決此問題並應用於高密度陣列的撓性感測系統開發,本研究提出整合雙層的垂直型導線、溫度感測金屬層及水平式導線於撓性基材上,形成一具有三維電性連結架構之全撓性溫度感測陣列元件。而本研究進一步設計不同繞折式型態之溫度感測器,並結合不同的溫度感測金屬層(金與鉑金屬)於此撓性平台上。其具備的優點包含:(1) 可解決複雜的繞線問題並提供陣列式之線路應用;(2) 可整合異質元件達到感測或多功能系統之開發;(3) 可利用相容高分子堆疊形成撓性結構或包覆形成撓性封裝架構;形成一具有高度相容之異質整合(Heterogeneous Integration)特性元件。

    關鍵字: 撓性元件、感測陣列、異質整合、垂直型導線


    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XVI 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1垂直型導線技術發展 2 1-2-2撓性基板發展 4 1-2-3撓性感測器 8 1-2-4撓性溫度感測元件 10 1-3 研究動機與目標 12 第二章 元件設計與製程 27 2-1電阻式溫度感測器設計原理 27 2-2全撓性溫度感測陣列設計 29 2-2-1電阻幾何與尺寸設計 29 2-2-2垂直型導線與線路設計 30 2-2-3溫度感測陣列設計 31 2-3異質元件整合與封裝 32 2-3-1異質元件整合 33 2-3-2元件封裝 34 2-4 撓性溫度感測陣列製程規劃 34 2-4-1製作流程規劃 35 2-4-2 THV 1st製作 35 2-4-3溫度感測金屬沉積 36 2-4-4 THV 2nd製作 36 2-4-5交錯式掃描線路製作 37 2-4-6同平面接點製作 38 2-5元件設計與製程總結 38 第三章 製程結果與整合封裝 53 3-1全撓性溫度感測陣列製作結果 53 3-1-1元件製作結果 53 3-1-2製作結果討論 55 3-2異質整合與封裝結果 57 3-2-1異質元件整合 57 3-2-2撓性封裝結果 58 3-2-3整合與封裝結果討論 59 第四章 元件分析與量測 76 4-1全撓性溫度感測陣列元件分析與量測 76 4-1-1元件結構觀察與分析 76 4-1-2幾何設計與溫阻係數 78 4-2異質整合與封裝元件量測 84 4-2-1異質整合元件量測 84 4-2-2撓性封裝元件量測 85 4-3元件量測結果討論 86 第五章 結論與未來工作 109 5-1 結論 109 5-2 未來工作 111 參考文獻 112

    [1] http://www.statschippac.com
    [2] M. Scannell, “CEA - Leti 3D Activities and Roadmap,” EMC-3D Technical Symposium, European, June, 2007, pp. 1-37.
    [3] V. Kirpesh, “EMC - 3D Seminar Silicon Substrate Technology for SiP Modules,” EMC-3D Seminar,Singapore, January, 2007, pp. 1-61.
    [4] http://www.emc3d.org/documents/library/technical/Alcatel%20DRIE-TSV%20Micromachining%20Systems_europe.pdf.
    [5] P. Siblerud and B. Kim, “TSV Chip Integration Pt2” EMC-3D Technical Symposium, Asia, SE, January, 2007, pp. 1-37.
    [6] Bob Chylak and Ivy Wei Qin, “Package Challenges and Solutions for Multi-Stack Die Application,” IEEE International Electronics Manufacturing Technology Symposium, July, 2002.
    [7] http://www.semi.org/
    [8] http://www.samsung.com/global/business/semiconductor
    [9] P. Siblerud, “Cost Reduction Scenario Of 3D TSV Integration,” TSV Technology Symposium, April, 2009.
    [10] P. Siblerud, “TSV Challenges & EMC-3D Overview,” EMC-3D Technical Symposium, October, 2007, pp. 1-9.
    [11] T. Ritzdorf and C. Sharbono, “Void - Free Cu Filling within High Aspect Ratio TSVs, ” EMC-3D Symposium, 2007.
    [12] M. Scannell, “CEA - Leti 3D Activities and Roadmap,” EMC-3D Technical Symposium, European, 2007, pp. 1-37.
    [13] V. Kirpesh, “EMC - 3D Seminar Silicon Substrate Technology for SiP Modules,” EMC-3D Seminar, Singapore 2007.
    [14] M.J. Wolf, P. Ramm, and A. Klumpp, “Thru-silicon Via Technology,” EMC-3D Technical Symposium, Asia, SE, 2007.
    [15] R. Beica, “Copper and Lead - Free Electrodeposition for Advanced Packaging Applications,” EMC-3D Advanced Packaging, 2007.
    [16] D. W. Lee, T. Ono, T. Abe, and M. Esashi, “Microprobe array with electrical interconnection for thermal imaging and data storage,” J. Microelectromech. System, Vol. 11, pp. 215-221, 2002.
    [17] O. Oralkan, A.S. Ergun, C.H. Cheng, J.A. Johnson, M. Karaman, T.H. Lee, and B.T. Khuri-Yakubi, “Volumetric ultrasound imaging using 2-D CMUT arrays,” IEEE transactions on ultrasonics, ferroelectrics and frequency control, Vol. 50, pp. 1581-1594, 2003.
    [18] www.standford.edu/group/SPRC/Report/poster/cheng.pdf
    [19] C.W. Lin, H.A. Yang, W.C. Wang and W. Fang., “Implementation of 3D SOI-MEMS wafer-level packaging using through-wafer interconnections,” J. Micromech. Microeng., Vol. 17, pp. 1200-1205. 2007.
    [20] www.uniflex.com.tw
    [21] E. Edqvist, N. Snis, R. C. Mohr, O. Scholz, P. Corradi, J. Gao, A. Diéguez, N. Wyrsch, and S. Johansson, “Evaluation of building technology for mass producible millimetre-sized robots using flexible printed circuit boards,” Journal of Micromechanics and Microengineering, vol. 19, p. 075011, 2009.
    [22] http://en.wikipedia.org/wiki/Polyimide
    [23] http://www2.dupont.com
    [24] 丁志明等人, 微機電系統技術與應用,台灣,行政院國家科學委員會精密儀器中心, 2003
    [25] 王登彥,林東穎 和 張均豪, 機械工業雜誌, 307期10月號, 台灣, 工業技術研究院機械與系統研究所, 2008.
    [26] www.conformal-coating.com/parylene_coating.htm
    [27] E. Saeedi, S. Kim and B. A. Parviz, “Building flexible circuits with self-assembly,” Circuit world, Vol. 34, pp 25-31, 2008.
    [28] E. Saeedi, S.-S. Kim, and B-A. Parviz, “Self-assembled inorganic micro-display on plastic,” IEEE MEMS’07, Kobe, Japan, January, 2007, pp. 21-25.
    [29] S.A. Stauth and B.A. Parviz, “Self-assembled single-crystal silicon circuits on plastic,” PNAS, Vol. 103, pp. 13922-13927, 2006.
    [30] E. Saeedi, S. Kima, H. Hoa, B.-A. Parviza, “Self-assembled single-digit micro-display on plastic,” Proc. of SPIE, Vol.6885, 2008.
    [31] E. Saeedi, S. Kim and B.-A. Parviz, “Self-assembled crystalline semiconductor optoelectronics on glass and plastic,” J. Micromech. Microeng., Vol. 18, 075019, 2008.
    [32] E. Iwase, H. Onoe, A. Nakai, K. Matsumoto, and I. Shimoyama, “Temperature-controlled transfer and self-wiring for multi-color LED display on a flexible substrate,” IEEE MEMS ’09, Sorrento, Italy, January, 2009, pp. 176-179.
    [33] IMEC, “Stretchable Electronic Circuits using Molded Interconnect Device (MID) Technology,” 2007.
    [34] http://www2.imec.be/
    [35] http://tfcg.elis.ugent.be/projects/stretchable.html
    [36] www.stella-project.de
    [37] http://www.vdivde-it.de/portale/shift/.
    [38] www.shift-project.org
    [39] H. Hsu, W. Su, C. Lee, H. Huang, H. Lin, and W. Fang, “3D integration of micro optical components on flexible transparent substrate with through-hole-vias,” IEEE MEMS ’10, Wanchai, Hong Kong, January, 2010, pp. 536-539.
    [40] C. S. Smith, “Piezoresistance effect in germanium and silicon,” Phys. Rev, Vol. 94, pp. 42-49, 1954.
    [41] A. C. M. Gieles, “Submmiature silicon pressure transducers,” Digest IEEE ISSCC, Philadelphia, PA, USA, 1969, Vol. 12, pp. 108-109.
    [42] E. S. Hwang, J. H. Seo, and Y. J. Kim, “A polymer-based flexible tactile sensor for normal and shear load detection,” IEEE MEMS’06, Istanbul, Turkey, January, 2006, pp21-26.
    [43] O. Kerpa, K. Weiss, H. Worn, “Development of a flexible tactile sensor system for a humanoid robot,” IEEE/RSJ, Vol.1, pp 1-6, 2003.
    [44] M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, Y. J. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “Design and fabrication of an artificial skin using PI-copper films,” IEEE MEMS’07, Kobe, Japan, January, 2007, pp389-392.
    [45] F. Jiang, Y. C. Tai, K. Walsh, T. Tsao, G. B. Lee, and C. M. Ho, “ A flexible MEMS technology and its first application to shear stress sensor skin,” IEEE MEMS ’97, Nagoya, Japan, January, 1997, pp. 465-470.
    [46] F. Jiang, G. B. Lee, Y. C. Tai, and C. M. Ho, “A flexible micromachine-based shear-stress sensor array and its application to separation-point detection,” Sens. Actuators A, Phys., Vol. 79, pp. 194-203, 2000.
    [47] D. J. Beebe and D. D. Denton, “A flexible polyimide-based package for silicon sensors,” Sens. Actuators A, Phys., Vol. 44, pp. 57-64, 1994.
    [48] S. Tung, S. R. Witherspoon, L. A. Roe, A. Silano, D. P. Maynard, and N. Ferraro, “A MEMS-based flexible sensor and actuator system for space inflatable structures,” Smart Materials and Structures, Vol. 10, pp. 1230-1239, 2001.
    [49] G. W. Xiao, P.C.H. Chan, A. Teng, J. Cai, and M.M.F. Yuen, “A pressure sensor using flip-chip on low-cost flexible substrate,” Electronic Components and Technology Conference, Orlando, FL, May, 2001, pp. 760-754.
    [50] Y. Hasegawa, M. Shikida, H. Sasaki, K. Itoigawa, and K. Sato, “An active tactile sensor for detecting mechanical characteristics of contacted objects,” J. Micromech. Microeng., Vol. 16, pp. 1625-1632, 2006.
    [51] H. C. Lim, B. Schulkin, M. J. Pulickal, S. Liu, R. Petrova, G. Thomas, S. Wagner, K. Sidhu, and J. F. Federici, “Flexible membrane pressure sensor,” Sens. Actuators A, Phys., Vol. 119, pp. 332-335, 2005.
    [52] E. S. Hwang, Y. J. Kim, B. K. Ju, “Flexible polysilicon sensor array modules using “etch-release” packaging scheme,” Sens. Actuators A, Phys., Vol. 112, pp. 135-141, 2004.
    [53] Y. Xu, F. Jiang, Y. C. Tai, A. Huang, C. M. Ho, and S. Newbern, “Flexible shear-Stress sensor skin and its application to unmanned aerial vehicle,” Sens. Actuators A, Phys., Vol. 105, pp. 321-329, 2003.
    [54] N. Sato, K. Machida, H. Morimura, S. Shigematsu, K. Kudou, M. Yano, and H. Kyuragi, “MEMS fingerprint sensor immune to various finger surface conditions,” IEEE Transaction on Electron Devices, Vol. 50, pp. 1109-1116, 2003.
    [55] H. K. Lee, S. I. Chang and E. Yoon, “A capacitive proximity sensor in dual implementation with tactile imaging capability on a single flexible platform for robot assistant applications,” IEEE MEMS ’06, Istanbul, Turkey, January, 2006, pp. 606-609.
    [56] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” PNAS, Vol. 101, pp. 9966-9970, 2004.
    [57] E. S. Hwang, J. H. Seo and Y. J. Kim, “A polymer-based flexible tactile sensor for both normal and shear load detection,” IEEE MEMS ’06, Istanbul, Turkey, January, 2006, pp. 714-717.
    [58] J. H. Kim, J. I. Lee, H. J. Lee, Y. K. Park, M. S. Kim, D. I. Kang, “Design of flexible tactile sensor based on three-component force and its fabrication,” ICRA 2005, Barcelona, Spain, April, 2005, pp. 2578-2581.
    [59] J. Engel, J. Chen, and C. Liu, “Development of polyimide flexible tactile sensor skin,” J. Micromech. Microeng., Vol. 13, pp.359-366, 2003.
    [60] T. Stieglitz, “Flexible biomedical microdevices with double-sided electrode arrangements for neural applications,” Sens. Actuators A, Phys., Vol. 90, pp. 203-211, 2001.
    [61] Y. H. Wen, G. Y. Yang, V. J. Bailey, G. Lin, W. C. Tang, and J. H. Keyak, “Mechanically robust micro-fabricated strain gauges for use on bones,” Microtechnology in Medicine and Biology 2005, May, 2005, pp. 302-304.
    [62] S. A. Dayeh, D. P. Butler, and Z. Çelik-Butler, “Micromachined. infrared bolometers on flexible polyimide substrates,” Sens. Actuators A, Phys., Vol. 118, pp. 49-56, 2005.
    [63] S. Han, Z. Y. Tan, K. Sato and M. Shikida, “Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications,” J. Micromech. Microeng., Vol. 15, pp. 282-289, 2005.
    [64] D. J. Beebe and D. D. Denton, “A polyimide package process for a semiconductor diaphragm tactile sensor,” Proc. of the Twelfth Annual International Conference of the IEEE, University of Wisconsin, USA, November, 1990, pp.1058-1059.
    [65] D. J. Beebe and D. D. Denton, “A flexible polyimide-based package for silicon sensor,” Sens. Actuators A, Phys., Vol.44, pp. 57-64, 1994.
    [66] K. Kim, K. R. Lee, Y. K. Kim, D. S. Lee, N. K. Cho, W. H. Kim, K. B. Park, H. D. Park, Y. K. Park, J. H. Kim, and J. J. Pak, “3-axes flexible tactile sensor fabricated by Si micromachining and packaging technology,” IEEE MEMS ’06, Istanbul, Turkey, January, 2006, pp. 678-681.
    [67] H. K. Lee, S. I. Chang, K. H. Kim, S. J. Kim, K. S. Yun, and E. Yoon, “A modular expandable tactile sensor using flexible polymer,” IEEE MEMS ’05, Miami, US, January, 2005, pp. 642-645.
    [68] J. Engel, J. Chen, Z. Fan, and C. Liu, “Polymer micromachined multimodal tactile sensors,” Sens. Actuators A, Phys., Vol. 117, pp. 50-61, 2005.
    [69] 張希臨, “微溫度感測器與加熱器之微熱晶片的設計與製造,” 國立成功大學航空太空工程碩士論文, 2004, pp 8-9.
    [70] S.M. Sze, Semiconductor Sensor, New York, NY:John Wiley and Sons, 1994, pp 357-358.
    [71] http://www.eettaiwan.com/ART_8800300534_480302_TA_a41f7cf2.HTM
    [72] Y. Moser and M. A. M. Gijs, “Miniaturised flexible temperature sensor,” IEEE Transducers ’07, Lyon, France, June, 2007, pp. 2279-2282.
    [73] B. T. Chia, D.R. Chang, H. H. Liao, Y. J. Yang, W. P. Shih, F. Y. Chang and K. C. Fan, “Temperature sensor array using flexible substrate,” IEEE MEME ’07, Hyogo, Japan, January, 2007, pp. 589-592.
    [74] L. C. Tsao, M. Y. Cheng, I. L. Chen1, W. P. Shih, Y. J. Yang, F. Y. Chang, K. C. Fan and S. H. Chang, “Flexible temperature sensor array using electro-resistive polymer forhumanoid artificial skin,” IEEE Transducers ’07, Lyon, France, June, 2007, pp. 2287-2290.
    [75] C. Y. Lee, S. J. Lee and G. W. Wu, “Fabrication of micro temperature sensor on the flexible substrate,” IEEE Nanotechnology ’07, Hong Kong, August, 2007, pp.1050-1053.
    [76] J. Naito, M. Shikida, M. Hirota, Z.Y. Tan and K. Sato, “Miniaturization of on-wall in-tube flexible thermal flow sensor using heat shrinkable tube,” IEEE MEMS ’08, Tucson, AZ, January, 2008, pp.924-927.
    [77] http://zh.wikipedia.org/zh-tw
    [78] http://www.allaboutcircuits.com/vol_1/chpt_12/6.html
    [79] W. Chot and B. Ziaie, “A foldable multi-chip package technology with a polyimide platform and flexible PDMS assembly mold,” IEEE MEMS 04’, Maastricht, Nederland, January, 2004, pp.701-704.
    [80] J. Jeong, K. Chun, J. Kim and B. Lee, “Simple alignment technique for molding and transfer of 3D PDMS structure using the mechanical alignment jig,” IEEE Africon '09, Nairobi, Kenya, September, 2009, pp.1-4.
    [81] E.K.L. Chan, C.K.Y. Wong, M. Lee, M.M.F. Yuen, and Y. K. Lee, “Using PDMS micro-transfer moulding for polymer flip chip packaging on MEMS,” Electronic Components and Technology Conference '05, Lake Buena Vista, FL, May, 2005, pp.1071 - 1076.
    [82] R. C. Ruo, C. F. Lin, C. W. Liu, “A PDMS mold with embedded sensory array for micromolding processes,” IEEE IECON '06, Paris, France, November, 2006, pp.3182-3186 .
    [83] D. J. Yao and P. Y. Chen, “Room temperature microchannel fabrication for microfluidic system,” IEEE Nanotechnology ’07, Hong Kong, August, 2007, pp.122-125.
    [84] S. H. Park, M. Y. Jung, T. H. Yoon and H. B. Pyo, “Cylindrical pillars in silicon PCR chip enhance the performance of DNA amplification,” IEEE Transducers '05, Seoul, Korea, June, 2005, pp.1604-1607.
    [85] E. Meng, P. Y. Li and Y. C. Tai, “Plasma removal of Parylene C,” J. Micromech. Microeng., Vol. 18, pp. 45004-45016, 2008.
    [86] 饒達仁,簡恆傑,陳昭榮, “金屬電阻溫度係數量測之自我加熱效應探討, ”中華民國第二十八屆全國力學會議,台北,台灣,2004
    [87] www.rdpe.com
    [88] J. C. McEntire, “Traceability (Product Tracing) in food systems technical report,” Institute of Food Technologists, Vol. 1, pp. 98-100, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE