研究生: |
陳昶宏 Chen, Chang Hung |
---|---|
論文名稱: |
具穿孔導線之高分子薄膜堆疊製程於撓性溫度感測陣列之應用 3D-Via Polymer Deposition Process for Flexible Temperature Sensor Array and Heterogeneous Integration |
指導教授: |
方維倫
Fang, Weileun |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 撓性元件 、垂直型導線 、感測陣列 、異質整合 |
外文關鍵詞: | flexible sensor, through via, sensor array, heterogeneous integration |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以往的撓性元件開發屬二維之線路架構,但於高密度整合或感測陣列式之設計時,其複雜的電路繞線勢必成為一大問題;為解決此問題並應用於高密度陣列的撓性感測系統開發,本研究提出整合雙層的垂直型導線、溫度感測金屬層及水平式導線於撓性基材上,形成一具有三維電性連結架構之全撓性溫度感測陣列元件。而本研究進一步設計不同繞折式型態之溫度感測器,並結合不同的溫度感測金屬層(金與鉑金屬)於此撓性平台上。其具備的優點包含:(1) 可解決複雜的繞線問題並提供陣列式之線路應用;(2) 可整合異質元件達到感測或多功能系統之開發;(3) 可利用相容高分子堆疊形成撓性結構或包覆形成撓性封裝架構;形成一具有高度相容之異質整合(Heterogeneous Integration)特性元件。
關鍵字: 撓性元件、感測陣列、異質整合、垂直型導線
[1] http://www.statschippac.com
[2] M. Scannell, “CEA - Leti 3D Activities and Roadmap,” EMC-3D Technical Symposium, European, June, 2007, pp. 1-37.
[3] V. Kirpesh, “EMC - 3D Seminar Silicon Substrate Technology for SiP Modules,” EMC-3D Seminar,Singapore, January, 2007, pp. 1-61.
[4] http://www.emc3d.org/documents/library/technical/Alcatel%20DRIE-TSV%20Micromachining%20Systems_europe.pdf.
[5] P. Siblerud and B. Kim, “TSV Chip Integration Pt2” EMC-3D Technical Symposium, Asia, SE, January, 2007, pp. 1-37.
[6] Bob Chylak and Ivy Wei Qin, “Package Challenges and Solutions for Multi-Stack Die Application,” IEEE International Electronics Manufacturing Technology Symposium, July, 2002.
[7] http://www.semi.org/
[8] http://www.samsung.com/global/business/semiconductor
[9] P. Siblerud, “Cost Reduction Scenario Of 3D TSV Integration,” TSV Technology Symposium, April, 2009.
[10] P. Siblerud, “TSV Challenges & EMC-3D Overview,” EMC-3D Technical Symposium, October, 2007, pp. 1-9.
[11] T. Ritzdorf and C. Sharbono, “Void - Free Cu Filling within High Aspect Ratio TSVs, ” EMC-3D Symposium, 2007.
[12] M. Scannell, “CEA - Leti 3D Activities and Roadmap,” EMC-3D Technical Symposium, European, 2007, pp. 1-37.
[13] V. Kirpesh, “EMC - 3D Seminar Silicon Substrate Technology for SiP Modules,” EMC-3D Seminar, Singapore 2007.
[14] M.J. Wolf, P. Ramm, and A. Klumpp, “Thru-silicon Via Technology,” EMC-3D Technical Symposium, Asia, SE, 2007.
[15] R. Beica, “Copper and Lead - Free Electrodeposition for Advanced Packaging Applications,” EMC-3D Advanced Packaging, 2007.
[16] D. W. Lee, T. Ono, T. Abe, and M. Esashi, “Microprobe array with electrical interconnection for thermal imaging and data storage,” J. Microelectromech. System, Vol. 11, pp. 215-221, 2002.
[17] O. Oralkan, A.S. Ergun, C.H. Cheng, J.A. Johnson, M. Karaman, T.H. Lee, and B.T. Khuri-Yakubi, “Volumetric ultrasound imaging using 2-D CMUT arrays,” IEEE transactions on ultrasonics, ferroelectrics and frequency control, Vol. 50, pp. 1581-1594, 2003.
[18] www.standford.edu/group/SPRC/Report/poster/cheng.pdf
[19] C.W. Lin, H.A. Yang, W.C. Wang and W. Fang., “Implementation of 3D SOI-MEMS wafer-level packaging using through-wafer interconnections,” J. Micromech. Microeng., Vol. 17, pp. 1200-1205. 2007.
[20] www.uniflex.com.tw
[21] E. Edqvist, N. Snis, R. C. Mohr, O. Scholz, P. Corradi, J. Gao, A. Diéguez, N. Wyrsch, and S. Johansson, “Evaluation of building technology for mass producible millimetre-sized robots using flexible printed circuit boards,” Journal of Micromechanics and Microengineering, vol. 19, p. 075011, 2009.
[22] http://en.wikipedia.org/wiki/Polyimide
[23] http://www2.dupont.com
[24] 丁志明等人, 微機電系統技術與應用,台灣,行政院國家科學委員會精密儀器中心, 2003
[25] 王登彥,林東穎 和 張均豪, 機械工業雜誌, 307期10月號, 台灣, 工業技術研究院機械與系統研究所, 2008.
[26] www.conformal-coating.com/parylene_coating.htm
[27] E. Saeedi, S. Kim and B. A. Parviz, “Building flexible circuits with self-assembly,” Circuit world, Vol. 34, pp 25-31, 2008.
[28] E. Saeedi, S.-S. Kim, and B-A. Parviz, “Self-assembled inorganic micro-display on plastic,” IEEE MEMS’07, Kobe, Japan, January, 2007, pp. 21-25.
[29] S.A. Stauth and B.A. Parviz, “Self-assembled single-crystal silicon circuits on plastic,” PNAS, Vol. 103, pp. 13922-13927, 2006.
[30] E. Saeedi, S. Kima, H. Hoa, B.-A. Parviza, “Self-assembled single-digit micro-display on plastic,” Proc. of SPIE, Vol.6885, 2008.
[31] E. Saeedi, S. Kim and B.-A. Parviz, “Self-assembled crystalline semiconductor optoelectronics on glass and plastic,” J. Micromech. Microeng., Vol. 18, 075019, 2008.
[32] E. Iwase, H. Onoe, A. Nakai, K. Matsumoto, and I. Shimoyama, “Temperature-controlled transfer and self-wiring for multi-color LED display on a flexible substrate,” IEEE MEMS ’09, Sorrento, Italy, January, 2009, pp. 176-179.
[33] IMEC, “Stretchable Electronic Circuits using Molded Interconnect Device (MID) Technology,” 2007.
[34] http://www2.imec.be/
[35] http://tfcg.elis.ugent.be/projects/stretchable.html
[36] www.stella-project.de
[37] http://www.vdivde-it.de/portale/shift/.
[38] www.shift-project.org
[39] H. Hsu, W. Su, C. Lee, H. Huang, H. Lin, and W. Fang, “3D integration of micro optical components on flexible transparent substrate with through-hole-vias,” IEEE MEMS ’10, Wanchai, Hong Kong, January, 2010, pp. 536-539.
[40] C. S. Smith, “Piezoresistance effect in germanium and silicon,” Phys. Rev, Vol. 94, pp. 42-49, 1954.
[41] A. C. M. Gieles, “Submmiature silicon pressure transducers,” Digest IEEE ISSCC, Philadelphia, PA, USA, 1969, Vol. 12, pp. 108-109.
[42] E. S. Hwang, J. H. Seo, and Y. J. Kim, “A polymer-based flexible tactile sensor for normal and shear load detection,” IEEE MEMS’06, Istanbul, Turkey, January, 2006, pp21-26.
[43] O. Kerpa, K. Weiss, H. Worn, “Development of a flexible tactile sensor system for a humanoid robot,” IEEE/RSJ, Vol.1, pp 1-6, 2003.
[44] M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, Y. J. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “Design and fabrication of an artificial skin using PI-copper films,” IEEE MEMS’07, Kobe, Japan, January, 2007, pp389-392.
[45] F. Jiang, Y. C. Tai, K. Walsh, T. Tsao, G. B. Lee, and C. M. Ho, “ A flexible MEMS technology and its first application to shear stress sensor skin,” IEEE MEMS ’97, Nagoya, Japan, January, 1997, pp. 465-470.
[46] F. Jiang, G. B. Lee, Y. C. Tai, and C. M. Ho, “A flexible micromachine-based shear-stress sensor array and its application to separation-point detection,” Sens. Actuators A, Phys., Vol. 79, pp. 194-203, 2000.
[47] D. J. Beebe and D. D. Denton, “A flexible polyimide-based package for silicon sensors,” Sens. Actuators A, Phys., Vol. 44, pp. 57-64, 1994.
[48] S. Tung, S. R. Witherspoon, L. A. Roe, A. Silano, D. P. Maynard, and N. Ferraro, “A MEMS-based flexible sensor and actuator system for space inflatable structures,” Smart Materials and Structures, Vol. 10, pp. 1230-1239, 2001.
[49] G. W. Xiao, P.C.H. Chan, A. Teng, J. Cai, and M.M.F. Yuen, “A pressure sensor using flip-chip on low-cost flexible substrate,” Electronic Components and Technology Conference, Orlando, FL, May, 2001, pp. 760-754.
[50] Y. Hasegawa, M. Shikida, H. Sasaki, K. Itoigawa, and K. Sato, “An active tactile sensor for detecting mechanical characteristics of contacted objects,” J. Micromech. Microeng., Vol. 16, pp. 1625-1632, 2006.
[51] H. C. Lim, B. Schulkin, M. J. Pulickal, S. Liu, R. Petrova, G. Thomas, S. Wagner, K. Sidhu, and J. F. Federici, “Flexible membrane pressure sensor,” Sens. Actuators A, Phys., Vol. 119, pp. 332-335, 2005.
[52] E. S. Hwang, Y. J. Kim, B. K. Ju, “Flexible polysilicon sensor array modules using “etch-release” packaging scheme,” Sens. Actuators A, Phys., Vol. 112, pp. 135-141, 2004.
[53] Y. Xu, F. Jiang, Y. C. Tai, A. Huang, C. M. Ho, and S. Newbern, “Flexible shear-Stress sensor skin and its application to unmanned aerial vehicle,” Sens. Actuators A, Phys., Vol. 105, pp. 321-329, 2003.
[54] N. Sato, K. Machida, H. Morimura, S. Shigematsu, K. Kudou, M. Yano, and H. Kyuragi, “MEMS fingerprint sensor immune to various finger surface conditions,” IEEE Transaction on Electron Devices, Vol. 50, pp. 1109-1116, 2003.
[55] H. K. Lee, S. I. Chang and E. Yoon, “A capacitive proximity sensor in dual implementation with tactile imaging capability on a single flexible platform for robot assistant applications,” IEEE MEMS ’06, Istanbul, Turkey, January, 2006, pp. 606-609.
[56] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” PNAS, Vol. 101, pp. 9966-9970, 2004.
[57] E. S. Hwang, J. H. Seo and Y. J. Kim, “A polymer-based flexible tactile sensor for both normal and shear load detection,” IEEE MEMS ’06, Istanbul, Turkey, January, 2006, pp. 714-717.
[58] J. H. Kim, J. I. Lee, H. J. Lee, Y. K. Park, M. S. Kim, D. I. Kang, “Design of flexible tactile sensor based on three-component force and its fabrication,” ICRA 2005, Barcelona, Spain, April, 2005, pp. 2578-2581.
[59] J. Engel, J. Chen, and C. Liu, “Development of polyimide flexible tactile sensor skin,” J. Micromech. Microeng., Vol. 13, pp.359-366, 2003.
[60] T. Stieglitz, “Flexible biomedical microdevices with double-sided electrode arrangements for neural applications,” Sens. Actuators A, Phys., Vol. 90, pp. 203-211, 2001.
[61] Y. H. Wen, G. Y. Yang, V. J. Bailey, G. Lin, W. C. Tang, and J. H. Keyak, “Mechanically robust micro-fabricated strain gauges for use on bones,” Microtechnology in Medicine and Biology 2005, May, 2005, pp. 302-304.
[62] S. A. Dayeh, D. P. Butler, and Z. Çelik-Butler, “Micromachined. infrared bolometers on flexible polyimide substrates,” Sens. Actuators A, Phys., Vol. 118, pp. 49-56, 2005.
[63] S. Han, Z. Y. Tan, K. Sato and M. Shikida, “Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications,” J. Micromech. Microeng., Vol. 15, pp. 282-289, 2005.
[64] D. J. Beebe and D. D. Denton, “A polyimide package process for a semiconductor diaphragm tactile sensor,” Proc. of the Twelfth Annual International Conference of the IEEE, University of Wisconsin, USA, November, 1990, pp.1058-1059.
[65] D. J. Beebe and D. D. Denton, “A flexible polyimide-based package for silicon sensor,” Sens. Actuators A, Phys., Vol.44, pp. 57-64, 1994.
[66] K. Kim, K. R. Lee, Y. K. Kim, D. S. Lee, N. K. Cho, W. H. Kim, K. B. Park, H. D. Park, Y. K. Park, J. H. Kim, and J. J. Pak, “3-axes flexible tactile sensor fabricated by Si micromachining and packaging technology,” IEEE MEMS ’06, Istanbul, Turkey, January, 2006, pp. 678-681.
[67] H. K. Lee, S. I. Chang, K. H. Kim, S. J. Kim, K. S. Yun, and E. Yoon, “A modular expandable tactile sensor using flexible polymer,” IEEE MEMS ’05, Miami, US, January, 2005, pp. 642-645.
[68] J. Engel, J. Chen, Z. Fan, and C. Liu, “Polymer micromachined multimodal tactile sensors,” Sens. Actuators A, Phys., Vol. 117, pp. 50-61, 2005.
[69] 張希臨, “微溫度感測器與加熱器之微熱晶片的設計與製造,” 國立成功大學航空太空工程碩士論文, 2004, pp 8-9.
[70] S.M. Sze, Semiconductor Sensor, New York, NY:John Wiley and Sons, 1994, pp 357-358.
[71] http://www.eettaiwan.com/ART_8800300534_480302_TA_a41f7cf2.HTM
[72] Y. Moser and M. A. M. Gijs, “Miniaturised flexible temperature sensor,” IEEE Transducers ’07, Lyon, France, June, 2007, pp. 2279-2282.
[73] B. T. Chia, D.R. Chang, H. H. Liao, Y. J. Yang, W. P. Shih, F. Y. Chang and K. C. Fan, “Temperature sensor array using flexible substrate,” IEEE MEME ’07, Hyogo, Japan, January, 2007, pp. 589-592.
[74] L. C. Tsao, M. Y. Cheng, I. L. Chen1, W. P. Shih, Y. J. Yang, F. Y. Chang, K. C. Fan and S. H. Chang, “Flexible temperature sensor array using electro-resistive polymer forhumanoid artificial skin,” IEEE Transducers ’07, Lyon, France, June, 2007, pp. 2287-2290.
[75] C. Y. Lee, S. J. Lee and G. W. Wu, “Fabrication of micro temperature sensor on the flexible substrate,” IEEE Nanotechnology ’07, Hong Kong, August, 2007, pp.1050-1053.
[76] J. Naito, M. Shikida, M. Hirota, Z.Y. Tan and K. Sato, “Miniaturization of on-wall in-tube flexible thermal flow sensor using heat shrinkable tube,” IEEE MEMS ’08, Tucson, AZ, January, 2008, pp.924-927.
[77] http://zh.wikipedia.org/zh-tw
[78] http://www.allaboutcircuits.com/vol_1/chpt_12/6.html
[79] W. Chot and B. Ziaie, “A foldable multi-chip package technology with a polyimide platform and flexible PDMS assembly mold,” IEEE MEMS 04’, Maastricht, Nederland, January, 2004, pp.701-704.
[80] J. Jeong, K. Chun, J. Kim and B. Lee, “Simple alignment technique for molding and transfer of 3D PDMS structure using the mechanical alignment jig,” IEEE Africon '09, Nairobi, Kenya, September, 2009, pp.1-4.
[81] E.K.L. Chan, C.K.Y. Wong, M. Lee, M.M.F. Yuen, and Y. K. Lee, “Using PDMS micro-transfer moulding for polymer flip chip packaging on MEMS,” Electronic Components and Technology Conference '05, Lake Buena Vista, FL, May, 2005, pp.1071 - 1076.
[82] R. C. Ruo, C. F. Lin, C. W. Liu, “A PDMS mold with embedded sensory array for micromolding processes,” IEEE IECON '06, Paris, France, November, 2006, pp.3182-3186 .
[83] D. J. Yao and P. Y. Chen, “Room temperature microchannel fabrication for microfluidic system,” IEEE Nanotechnology ’07, Hong Kong, August, 2007, pp.122-125.
[84] S. H. Park, M. Y. Jung, T. H. Yoon and H. B. Pyo, “Cylindrical pillars in silicon PCR chip enhance the performance of DNA amplification,” IEEE Transducers '05, Seoul, Korea, June, 2005, pp.1604-1607.
[85] E. Meng, P. Y. Li and Y. C. Tai, “Plasma removal of Parylene C,” J. Micromech. Microeng., Vol. 18, pp. 45004-45016, 2008.
[86] 饒達仁,簡恆傑,陳昭榮, “金屬電阻溫度係數量測之自我加熱效應探討, ”中華民國第二十八屆全國力學會議,台北,台灣,2004
[87] www.rdpe.com
[88] J. C. McEntire, “Traceability (Product Tracing) in food systems technical report,” Institute of Food Technologists, Vol. 1, pp. 98-100, 2009.