研究生: |
黃治平 |
---|---|
論文名稱: |
非線性代數方程組分歧點與解分支之探討 Numerical Investigation for Bifurcation Points and Solution Branches of Nonlinear Algebraic Equations |
指導教授: | 簡國清教授 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 分歧點 、隱函數定理 、解分支 、割線預測法 、牛頓迭代法 、虛擬弧長延拓法 |
外文關鍵詞: | Bifurcation point, Implicit function theorem, Solution branches, Secant -predictor method, Newton’s interative method, pseudo-arclength continuation method |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文,旨在探討非線性代數方程組之分歧點與其解分支結構。
首先,我們以隱函數定理為基礎,推導計算出分歧點。由於在分歧點鄰域上具有多重解特性,如何一個一個的找出其解分支,是分歧問題中的重要課題之一。在解決此課題的演算法中,我們除了運用隱函數定理外,並引用有限維度Liapunov-Schmidt降階法、解分支方向、割線預測法、牛頓迭代法以及虛擬弧長延拓法等數值方法來延拓出所有通過分歧點的解分支路徑。
最後,我們將針對三個非線性代數方程組模型,分別求得存在的分歧點及其解分支路徑圖,使我們更清楚知道該系統的分歧現象與定性上的變化。
The main purpose of this thesis is to investigate bifurcation points and solution branches of nonlinear algebraic equations.
First, we use implicit function theorem as the foundation to calculate the bifurcation points. because in the neighborhood of bifurcation point has multiple solutions characteristic ,how to find the solution branches one by one is the important topic of the bifurcation problems. In our algorithm ,in addition to the implicit function theorem, we also quote the numerical method of finite dimensional Liapunov-Schmidt reduction method, the direction solution branch, secant predictor method, Newton’s interative method, and pseudo–arclength continuation method, to continue all solution branches and pass through bifurcation points.
Finally, we will investigate three nonlinear algebraic equation models, to get the existence of bifurcation points and solution branches of models, which make us understand the bifurcation phenomenon and the varity of qualitative properties of models more clearly.
[1] Allgower,E.L. and Chien,C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7, pp.1265- 1281, 1986.
[2] Atkinson,K.E., The numerical solution of bifurcation problems, SIAM J. Numer. Anal., 14(4), pp.584-599, 1977.
[3] Brezzi,F., Rappaz,J. and Raviart,P.A., Finite dimensional approximation of a bifurcation problems, Numer. Math., 36, pp.1-25, 1980.
[4] Brown,K.J., Ibrahim,M.M.A. and Shivaji,R., S-Shaped bifurcation curves, Nonlinear Analysis, T.M.A, 5, pp.475-486, 1981.
[5] Crandall,M.G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P.H. Rabinowitz, Academic Press, pp. 1-35, 1977.
[6] Crandall,M.G. and Rabinowitz,P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340, 1971.
[7] Crandall,M.G. and Rabinowitz,P.H., Bifurcation, Perturbation of Simple Eigenvalues, and Linearized Stability, Archive for rational Mech. Analysis, 52, pp.161-180, 1973.
[8] Crandall,M.G. and Rabinowitz,P.H., Mathematical Theory of Bifurcation,Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos,C. and Bessis,D., NATO Advanced Study Institute Series, 1979.
[9] Iooss,G and Joseph,D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, 1989.
[10] Jepson,A.D. and Spence,A., Numerical Methods for Bifurcation Problems, State of the Art in Numeriacl Analysis, edit bu A. Iserles, MJD Powell, 1987.
[11]J.M Ortega.w.c. Rheinboldt:Iterative Solution of Nonlinear Equations in several variables.Academic press.New York London.1970.
[12] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, pp. 359-384, 1977.
[13] Keller,H.B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, 1987.
[14] Keller,H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited By Rabinowitz,P.H., Academic Press, pp.359-384, 1977.
[15] Keller,H.B. and Langford,W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems, Arch. Rational Mech. Anal., 48, pp.83-108, l972.
[16] Küpper,T., Mittelmann,H.D. and Weber,H.(eds.), Numerical Methods for Bifurcation Problems, Birkhäuser, Basel, 1984.
[17] Kubiček,M. and Marek,M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, 1983.
[18] Rheinboldt,W.C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237,1980.
[19] Rheinboldt,W.C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley,New York.
[20] Shivaji,R., Remarks on an S-shaped bifurcation curve, J. Math. Analysis Applic., 111, pp.374-387,1985.
[21] Shivaji,R., Uniqueness result for a class of postione problems, Nonlinear Analysis: theory, methods and application, 7, pp.223-230, 1983.
[22] Wacker,H.(ed),Continuation Methods, Academic Press, New York, 1978.
[23] Wang,S.H., On S-Shaped Bifurcation curves, Nonlinear Analysis: theory, methods and application, 22, pp.1475-1485, 1994.