簡易檢索 / 詳目顯示

研究生: 羅正鴻
Lo, Cheng-Hung
論文名稱: 低漏電差值感測基於PPN架構十電晶體組成次臨界電壓靜態隨機存取記憶胞
A PPN Based 10T Sub-threshold SRAM Cell with Low Leakage and Differential Sensing
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 35
中文關鍵詞: 靜態隨機存取記憶體低漏電雜訊間隙字元線漏電
外文關鍵詞: SRAM, Low leakage, Noise margin, Bitline leakage
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們提出了一個由P-P-N反向器形成的差值感測十電晶體組成靜態隨機存取記憶胞能提供低功耗操作的功能。因為記憶胞穩定度在門檻電壓時特別容易受到雜訊影響,我們的記憶胞能避免讀取干擾使得記憶胞穩定度被大幅改善。此外,在沒有記憶胞穩定度的限制下,我們引入逆短通道效應來加強存取門戶電晶體以確保記憶胞寫入度。隨著奈米製程下電晶體漏電流現象變得越來越顯著,我們提出一套VGND偏壓模式以降低跟資料相關的漏電流影響。無需複雜的字元線控制,提出的記憶胞允許複數字元在一條字元線上以增加記憶胞密度並且允許有效率的使用錯誤更正碼。為了驗證提出的記憶胞,我們實作了一個含有16Kb提出的記憶胞的陣列使用90奈米製程。為了比較的考量,我們也實作了一個含有2Kb以前提出的記憶胞的陣列在晶片中。提供給陣列和周邊電路的電壓源被分開以支援周邊電路電壓調升和量測記憶胞陣列所消耗的漏電流。提高週邊電路電壓不只可以加快晶片操作速度,也可以解除操作在低電壓的限制,記憶胞陣列仍可操作在低電壓,大幅降低消耗的漏電流功率。晶片量測結果顯示16Kb提出的記憶胞陣列最低可以操作在285mV。藉由調升周邊電路電壓至400mV,提出的記憶胞陣列最低可以操作在265mV而且可以操作在更高的頻率。在300mV電壓源下,整個16Kb陣列消耗2.6uW。經過正規化後,提出的記憶胞只消耗了之前的記憶胞0.2倍的漏電流。


    In this thesis, we propose a P-P-N inverter based differential 10T SRAM cell capable of providing low power operation. Since cell stability is especially vulnerable to noise at sub-threshold voltage, the proposed cell avoids read disturb, improving cell stability significantly. Without cell stability concern, we strengthen the access transistors to ensure cell writability by employing reverse short channel effect. As transistor leakage becomes more prominent in nanometer technology, we introduce VGND biasing scheme to reduce the impact of data-dependent leakage current. Without complicate wordline control, the proposed cell allows multi-word on a wordline to increase cell density and to enable efficient error correction code (ECC). To verify the proposed cell, a 16Kb array of the proposed cell is fabricated in 90nm CMOS technology. For comparison, we also fabricate 2Kb array of previous work in our chip. Supply voltage for array and peripheral is separated to enable periphery voltage boosting and to measure the cell array leakage. Applying higher peripheral voltage not only enhances the chip operating speed but also resolve the operating limitation at low voltage while the cell array still operates at lower voltage, reducing leakage power significantly. Measurement results show the 16Kb array of the proposed cell can work successfully down to 285mV. By boosting periphery voltage to 0.4V, the proposed cell can work at a lower (265mV) voltage and operate at a higher frequency. The entire 16Kb array consumes 2.6uW leakage power at 300mV. After normalization, our cell consumes only 0.2X leakage current compared to previous work.

    Abstract (English) I Abstract (Chinese) II Acknowledgement (Chinese) IV Content V List of Figures VI List of Tables VIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2 The Proposed 10T Cell 5 2.1 P-P-N Based Cell Structure 5 2.2 Read Operation 6 2.3 Write Operation 9 2.4 Efficient Bit-Interleaving 14 2.5 Data-Dependent Leakage Suppression Method 16 Chapter 3 Test Chip Implementation 21 Chapter 4 Measurement Results 23 4.1 Performance 23 4.2 Power Consumption 28 4.3 Comparison 30 Chapter 5 Conclusions 32 Bibliography 33

    [1] B. Calhoun and A. Chandrakasan, “Static noise margin variation for sub-threshold SRAM in 65 n-nm CMOS,” IEEE J. Solid-State Circuits, vol. 41, pp. 1673–1679, 2006.
    [2] B. H. Calhoun and A. Chandrakasan, “A 256 kb sub-threshold SRAM in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 680–688, Mar. 2007.
    [3] T. Kim, J. Liu, J. Keane, and C. Kim, “A 0.2 V, 480 kb subthreshold SRAM with 1 k cells per bitline for ultra-low-voltage computing,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 518–529, Feb. 2008.
    [4] B. Zhai, D. Blaaauw, and D. Sylvester, “A variation-tolerant sub-200 mV 6-T subthreshold SRAM,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2338–2348, Oct. 2008.
    [5] N. Verma and A. Chandrakasan, “A 256 kb 65 nm 8T sub-Vt SRAM employing sense-amplifier redundancy,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 141–149, Jan. 2008.
    [6] T. Kim, J. Liu, and C. Kim, “A voltage scalable 0.26 V, 64 kb 8T SRAM with Vmin lowering techniques and deep sleep mode,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1785–1795, Jun. 2009.
    [7] J. Kulkarni, K. Kim, and K. Roy, “A 160 mV robust Schmitt trigger based sub-threshold SRAM,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2303–2313, Oct. 2007.
    [8] I. J. Chang, J. Kim, S. P. Park, and K. Roy, “A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 650–658, Feb. 2009.
    [9] M.-T. Chang, and W. Hwang, “A fully-differential subthreshold SRAM cell with auto-compensation,” in IEEE APCCAS, 2008, pp. 1771–1774.
    [10] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits: A Design Perspective, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 2002.
    [11] M. Sharifkhani, and M. Sachdev, “An energy efficient 40 Kb SRAM module with extended read/write noise margin in 0.13 um CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 620–630, Feb. 2009.
    [12] S. Hanson et al., “Performance and variability optimization strategies in a sub-200 mV, 3.5 pJ/inst, 11 nW subthreshold processor,” in Symp. VLSI Circuits Dig., 2007, pp. 152–153.
    [13] K. Nii et al., “A 90 nm dual-port SRAM with 2.04 /spl mu/m/sup 2/ 8T-thin cell using dynamically-controlled column bias scheme,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2004, pp. 508–543.
    [14] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, pp. 1433–1440, 1989.
    [15] P. Hazucha et al., “Neutron soft error rate measurements in 90-nm CMOS process and scaling trends from 0.25-um to 90-nm generation,” in IEDM Tech. Dig., Dec. 2003, pp. 21.5.1–21.5.4.
    [16] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization of multi-bit soft error events in advanced SRAMs,” in IEDM Tech. Dig., Dec. 2003, pp. 21.4.1–21.4.4.
    [17] Y. Ye, S. Borkar, and V. De, “A new technique for standby leakage reduction in high performance circuits,” in Proc. IEEE Symp. VLSI Circuits, Jun. 1998, pp. 40–41.
    [18] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1148–1158, Jul. 2004.
    [19] K. Itoh, "VLSI Memory Chip Design", Springer Verlag, 2001.
    [20] N. H. E. Weste, D. Harris, "CMOS VLSI Design A Circuits and Systems Perspective Third Edition", Addison Wesley, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE