簡易檢索 / 詳目顯示

研究生: 吳康華
Wu, Kang-Hua
論文名稱: 在高介電係數介電層上氮化鉭金屬閘極熱穩定性研究
Thermal Stability of TaN Metal Gate on High-k Dielectrics
指導教授: 洪銘輝
Hong, Minghwei
郭瑞年
Kwo, Ray-Nien
口試委員: 郭治群
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 58
中文關鍵詞: 氮化鉭熱穩定性金屬閘極高介電係數介電層
外文關鍵詞: TaN, thermal stability, metal gate, high-k dielectric constant, dielectric
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在極薄的氧化物下,傳統的多晶矽閘極已經不衍於用,主要有二個問題:第一,多晶矽會產生空乏區,進而增加等效氧化物厚度;第二,參雜物穿隧至下層,導致臨界電壓改變。為解決此問題,最直接的方法便是將多晶矽閘極改成金屬閘極或者金屬氮化物閘極,此閘極必須有四個條件:(1)適合的功函數;(2)低電阻率;(3)高熱穩定性;(4)相容於高介電係數介電層和製程整合。在諸多的金屬閘極中,氮化鉭兼具上述(3)和(4)作為閘極的優點。
    在此論文中,氮化鉭利用直流式濺鍍沉積於原子層沉積的高介電係數介電層上,其中包含了氧化鋁和氧化鉿鋁。透過X光繞射分析,氮化鉭薄膜結構經過900度C退火後,仍維持為面心立方。從穿透地電子顯微鏡影像發現,經過800度C退火氮化鉭與氧化鋁仍具有清晰的介面。氮化鉭薄膜的表面利用原子探真掃描,發覺其粗糙度維持在1.5nm以下。從金氧半二極電晶體量測電容電壓特性特性圖和漏電特性圖,並比較其與退火溫度之間的關係。在閘極偏壓為VFB-1V下所量測到的漏電流密度對氧化鋁和氧化鉿鋁分別為~2.4×10-8A/cm^2以及 ~8.5×10-8A/cm^2。


    Chapter 1 Introduction 1 1.1 Background 1 1.2 Conventional Si and SiO2 2 1.3 High-κ Gate Dielectrics and III-V Compound Semiconductors 4 1.4 Motivation 7 Chapter 2 Fundamental Theories and Instrumentations 9 2.1 Fundamentals of the metal-oxide-semiconductor (MOS) 9 Accumulation (VG < VFB) 9 Depletion (VFB < VG < VT) 10 Inversion (VG > VT) 11 2.2 Fundamentals of the MOSFET 14 2.3 Multi-Chamber Ultra-High Vacuum Molecular Beam Epitaxy System 16 2.4 Atomic Layer Depoisition 19 2.5 X-Ray Diffraction 21 2.6 High Resolution Transmission Electron Microscope 24 2.7 Atomic Force Microscope 27 2.8 Sputter Deposition 28 Chapter 3 Experiment 31 3.1 Experimental Procedure 31 3.2 Film Deposition 31 ALD Oxide Deposition 31 3.3 Process 33 3.4 Sample Analysis 36 X-Ray Diffraction 36 TEM Analysis 37 Electrical Property Measurement 39 Chapter 4 Result and Discussion 40 4.1 HR-TEM Image of Interfaces 40 4.2 Structure Analysis 43 4.3 Surface Morphology 44 4.4 Electrical Properties 46 Chapter 5 Conclusion 52 Reference: 53

    1. G. E. Moore, Electronics, 38, 114-117 (1965)
    2. Taur, IEEE Spectrum, July 1999
    3. K Xue et al., J. Phys. D: Appl. Phys.402886 (2007)
    4. D. A. Muller et al., Nature 399, 758 (1999)
    5. Michel Houssa, High-k gate dielectrics, Institute of Physics, Bristol (2004)
    6. H. W. Becke, R. Hall, and J. P. White, “Gallium arsenide MOS transistor,” Solid-State Electronics, vol. 8, pp. 813–823, 1965.
    7. D. Butcher and B. Sealy, “Electrical properties of thermal oxides on GaAs,” Electronics Letters, vol. 13, pp. 558–559, 1977.
    8. H. Hasegawa, K. E. Forward, and H. L. Hartnagel, “New anodic native oxide of GaAs with improved dielectric and interface properties,” Applied Physics Letters, vol. 26, no. 10, pp. 567–569, 1975.
    9. . A. Weinreich, “Oxide films grown on GaAs in an oxygen plasma,” Journal of Applied Physics, vol. 37, no. 7, pp. 2924–2924, 1966.
    10. N. Yokoyama, T. Mimura, K. Odani, and M. Fukuta, “Low-temperature plasma oxidation of GaAs,” Applied Physics Letters, vol. 32, no. 1, pp. 58–60, 1978.
    11. L. A. Chesler and G. Y. Robinson, “dc plasma anodization of GaAs,” Applied Physics Letters, vol. 32, no. 1, pp. 60–62, 1978.
    12. V. M. Bermudez, “Photoenhanced oxidation of gallium arsenide,” Journal of Ap-plied Physics, vol. 54, no. 11, pp. 6795–6798, 1983.
    13. C. F. Yu, M. T. Schmidt, D. V. Podlesnik, E. S. Yang, and J. R. M. Osgood, “Ultra-violet-light-enhanced reaction of oxygen with gallium arsenide surfaces,” Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, vol. 6, no. 3, pp. 754–756, 1988.
    14. S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappell, and G. D. Pettit, “Unpinned (100) GaAs surfaces in air using photochemistry,” Applied Physics Letters, vol. 48, no. 7, pp. 475–477, 1986.
    15. T. Mimura and M. Fukuta, “Status of the GaAs metal-oxide-semiconductor tech- nology,” IEEE Transactions on Electron Devices, vol. 27, pp. 1147–1155, 1980.
    16. J. H. C. Casey, A. Y. Cho, and E. H. Nicollian, “Use of oxygen-doped AlxGa1-xAs for the insulating layer in MIS structures,” Applied Physics Letters, vol. 32,
    17. M. R. Melloch, N. Otsuka, J. M. Woodall, A. C. Warren, and J. L. Freeouf, “Formation of arsenic precipitates in GaAs buffer layers grown by molecular beam epitaxy at low substrate temperatures,” Applied Physics Letters, vol. 57, no. 15, pp. 1531–1533, 1990.
    18. W. T. Tsang, “Low-current-threshold and high-lasing uniformity GaAs-AlxGa1-xAs double-heterostructure lasers grown by molecular beam epi-taxy,”Applied Physics Letters, vol. 34, no. 7, pp. 473–475, 1979.
    19. B. J. Skromme, C. J. Sandroff, E. Yablonovitch, and T. Gmitter, “Effects of passivating ionic films on the photoluminescence properties of GaAs,” Applied Physics Letters, vol. 51, no. 24, pp. 2022–2024, 1987.
    20. E. Yablonovitch, C. J. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated GaAs surfaces,” Applied Physics Letters, vol. 51, no. 6, pp. 439–441, 1987.
    21. A. Callegari, P. D. Hoh, D. A. Buchanan, and D. Lacey, “Unpinned gallium oxide/GaAs interface by hydrogen and nitrogen surface plasma treatment,” Applied Physics Letters, vol. 54, no. 4, pp. 332–334, 1989.
    22. H. Hasegawa, M. Akazawa, K. ichirou Matsuzaki, H. Ishii, and H. Ohno, “GaAs and In0.53Ga0.47As MIS structures having an ultrathin pseudomorphic interface control layer of Si prepared by MBE,” Jpn. J. Appl. Phys., vol. 27, no. 12, pp. L2265–L2267, 1988.
    23. S. Tiwari, S. Wright, and J. Batey, “Unpinned GaAs MOS capacitors and transistors,” IEEE Electron Device Letters, vol. 9, pp. 488–490, 1988.
    24. G. Fountain, R. Rudder, S. Hattangady, R. Markunas, and J. Hutchby, “Demonstration of an n-channel inversion mode GaAs MISFET,” IEEE International Electron Device Meeting, Technical Digest, pp. 887–889, Dec. 1989.
    25. M. Passlack, M. Hong, and J. P. Mannaerts, “Quasistatic and high frequency capacitance–voltage characterization of Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy,” Applied Physics Letters, vol. 68, no. 8, pp. 1099–1101, 1996.
    26. M. Passlack, M. Hong, J. P. Mannaerts, R. L. Opila, S. N. G. Chu, N. Moriya, F. Ren, and J. R. Kwo, “Low Dit thermodynamically stable Ga2O3-GaAs interfaces: fabrication, characterization, and modeling,” IEEE Transactions on Electron Devices, pp. 214–225, Feb. 1997.
    27. M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation,” Science, vol. 283, no. 5409, pp. 1897–1900, 1999.
    28. F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, “Demonstration of enhancement-mode p- and n-channel GaAs MOSFETs with Ga2O3 (Gd2O3) As gate oxide,” Solid-State Electronics, vol. 41, pp. 1751–1753, 1997.
    29. Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. Tsai, J. J. Krajewski, Y. K. Chen, and A. Y. Cho, “Demonstration of submicron depletion-mode GaAs MOSFETs with negligible drain current drift and hysteresis,” IEEE Electron De-vice Letters, vol. 20, pp. 457–459, 1999.
    30. F. Ren, J. Kuo, M. Hong, W. Hobson, J. Lothian, J. Lin, H. Tsai, J. Mannaerts, J. Kwo, S. Chu, Y. Chen, and A. Cho, “Ga2O3 (Gd2O3)/InGaAs enhancement-mode n-channel MOSFETs,” IEEE Electron Device Letters, vol. 19, pp. 309–311, 1998.
    31. M. Hong, J. N. Baillargeon, J. Kwo, J. P. Mannaerts, and A. Y. Cho, “First demon-stration of GaAs CMOS,” Compound Semiconductors, 2000 IEEE International Symposium on, pp. 345–350, 2000
    32. Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, H. S. Tsai, J. Kwo, J. J. Kra- jewski, Y. K. Chen, and A. Y. Cho, “Ga2O3 (Gd2O3)/GaAs power MOS-FETs,”Electronics Letters, 1999
    33. 1C. Hobbs, L. Fonseca, V. Dhandapani, S. Samavedam, B. Taylor, J. Grant,L. Dip, D. Triyoso, R. Hegde, D. Gilmer, R. Garcia, D. Roan, L. Lovejoy,R. Rai, L. Hebert, H. Tseng, B. White, and P. Tobin, Tech. Dig. VLSISymp. 2003, 9.
    34. C. C. Hobbs, L. R. C. Fonseca, A. Knizhnik, V. Dhandapani, S. B. Samavedam,W. J. Taylor, J. M. Grant, L. G. Dip, D. H. Triyoso, R. I. Hegde,D. C. Gilmer, R. Garcia, D. Roan, M. L. Lovejoy, R. S. Rai, E. A. Hebert,H. H. Tseng, S. G. H. Anderson, B. E. White, and P. J. Tobin, IEEE Trans.Electron Devices 51, 971, 2004.
    35. C. C. Hobbs, L. R. C. Fonseca, A. Knizhnik, V. Dhandapani, S. B. Samavedam,W. J. Taylor, J. M. Grant, L. G. Dip, D. H. Triyoso, R. I. Hegde,D. C. Gilmer, R. Garcia, D. Roan, M. L. Lovejoy, R. S. Rai, E. A. Hebert,H. H. Tseng, S. G. H. Anderson, B. E. White, and P. J. Tobin, IEEE Trans.Electron Devices 51, 978,(2004).
    36. H. Takeuchi, H. Y. Wong, D. Ha, and T.-J. King, Tech. Dig. - Int. ElectronDevices Meet. 2004, 829.
    37. K. Shiraishi, K. Yamada, K. Torii, Y. Akasaka, K. Nakajima, M. Kohno, T.Chikyo, H. Kitajima, and T. Arikado, Tech. Dig. VLSI Symp. 2004, 108.
    38. K. J. Choi and S. G. Yoon, Electrochem. Solid-State Lett. 7, G47, (2001).
    39. B. H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W.J. Qi, C. Kang, and J. C. Lee, Tech. Dig. - Int. Electron Devices Meet. (2000), 39.
    40. Takagi SI, Toriumi A, Iwase M, Tango H. IEEE Trans ED, 41, 2357, (1994).
    41. W. Braun, “Applied RHEED”, Springer-Verlag, 1999.
    42. H. Craig Casey, jr., “Devices For Integrated Circuits Silicon And III-V compound semiconductors,” Wiley, Chap 7, p.335.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE