研究生: |
朱永祺 Chu, Yung Chi |
---|---|
論文名稱: |
玻璃轉換溫度以下奈米碳管/環氧樹脂介面增強阻尼性質:可程式化電控高強度阻尼 Carbon nanotube-epoxy interface improved damping below glass transition temperature:programmable controlled high strength damper |
指導教授: |
徐文光
Hsu, Wen Kuang |
口試委員: |
郭信良
Kuo, Hsin Liang 呂昇益 Lu, Sheng Yi 許景棟 Hsu, Ching Tung 溫華強 Wen, Hua Chiang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 奈米碳管 、複合材料 、分子動力學 |
外文關鍵詞: | carbon nanotubes, composites, molecular dynamics |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由奈米碳管、環氧樹脂與玻璃纖維組成的可程式化電控相轉變之高強度複合材料。可藉由加入奈米碳管以控制在玻璃轉換溫度時的吸收能量能力,藉由施加電壓將剛性複合材料變更為阻尼器與橡膠,達到快速吸震效果。並在加入玻璃纖維作為強化材料後,測試其阻尼特性以及玻璃轉換溫度改變。阻尼係數經量測為0.1,並可在約6秒內達到最大吸震能力。本文探討加入奈米碳管後,環氧樹脂與奈米碳管間的介面效應,並藉由實際模擬測試探討實際應用方向。人造衛星及太陽能板因機械構造產生的自然震動或是飛機與風力發電葉片因亂流與風阻產生的間歇性震動等均可使用此複合才達到快速吸震。亦可應用於房屋與橋梁之防震,藉由此材料破壞共振頻率,降低損失與意外發生機率。
Composites made from fibers and epoxy display a low viscous drag and are barely used as mechanical damper at room temperature. Incorporation of carbon nanotubes into epoxy promotes interfaces that govern damping mechanism in the vicinity of glass transition temperature. Damping character remains unchanged as glass fibers are also present in composites and damping coefficient is measured to be 0.1.
[1] S. Iijima, Nature, 1991, 354, 56-58.
[2] J. Appenzeller, Y. M. Lin, J. Knoch and P. Avouris, Physical Review Letters, 2004, 93, 196805.
[3] H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert and R. E. Smalley, Chemical Physics Letters, 1996, 260, 471-475.
[4] A. Aqel, K. M. M. A. El-Nour, R. A. A. Ammar and A. Al-Warthan, Arabian Journal of Chemistry, 2012, 5, 1-23.
[5] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka and Y. Achiba, Synthetic Metals, 1999, 103, 2555-2558.
[6] R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science, 2002, 297, 787-792.
[7] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, Science, 1999, 283, 512-514.
[8] Ebbesen, Thomas W. Carbon nanotubes preparation and properties. CRC press, 1996.
[9] Dresselhaus, Mildred S., Gene Dresselhaus, and Peter C. Eklund. Science of fullerenes and carbon nanotubes: their properties and applications. Academic press, 1996.
[10] M. Terrones, Annu. Annual Review of Materials Research., 2003, 33, 419.
[11] T. W. ODOM,J. L. Huang, P.Kim, C. M. Lieber, Nature, 1998, 391, 62.
[12] B. I. Yakobson, R. E. Smalley, American Scientist Online., 1997, 85, 324
[13] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of fullerences & Carbon Nanotubes, San Diego: Academic Press, 1996.
[14] E. Logakis, C. Pandis, V. Peoglos, P. Pissis, C. Stergiou, J. Pionteck, P. Pötschke, M. Mičušík and M. Omastová, Journal of Polymer Science Part B: Polymer Physics, 2009, 47, 764-774.
[15] S. Iijima and T. Ichihashi, Nature, 1993, 363, 603-605.
[16] C. Mi, C. Chieng-Ming, S. Shin-Chen and C. Chia-Fu, Japanese Journal of Applied Physics, 2003, 42, 614.
[17] E. F. Kukovitsky, S. G. L’vov, N. A. Sainov, V. A. Shustov, L. A. Chernozatonskii, Chemical Physics Letters, 2002, 355, 497.
[18] R. A. Segura, C. Contreras, R. Henriquez, P. Häberle, J. J. S. Acuña, A. Adrian, P. Alvarez and S. A. Hevia, Nanoscale Research Letters, 2014, 9, 207-207.
[19] J. C. Charlier and J. P. Michenaud, Physical Review Letters, 1993, 70, 1858-1861.
[20] N. Wang, Z. K. Tang, G. D. Li and J. S. Chen, Nature, 2000, 408, 50-51.
[21] Q. H. Yang, S. Bai, J. L. Sauvajol, J. B. Bai, Advanced Materials, 2003, 15, 792.
[22] T. W. Ebbesen, P. M. Ajayan, Nature, 1992, 358, 220.
[23] C.H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, M. S. Dresselhaus, Physical Review Letters, 1998, 81, 1869.
[24] C. L. Kane, E. J. Mele, Physical Review Letters, 1997, 78, 1932.
[25] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Reviews of Modern Physics, 2009, 81, 109.
[26] M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier and E. Hernández, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2004, 362, 2065-2098.
[27] N. Hamada, S. Sawade, A. Oshiyama, Physical Review Letters, 1992, 68, 1579.
[28] J. W. Mintmire, B. I. Dunlap, C. T. White, Physical Review Letters, 1992, 68, 631.
[29] Harrisona, K. L. A. a. R. G., A computer-controlled Gerdien atmospheric ion counter. Review of Scientific Instruments. 2000, 71.
[30] K. Tanaka, T.Y., K. Fukui, The Science and Technology of Carbon Nanotubes. Elsevier Science, 1999. 1 edition.
[31] M. Meyyappan, L.D., A. Cassell and D. Hash, Plasma Sources Science and Technology, 2003, 12, 205.
[32] R.E. Smalley, M.S.D., G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Springer, 2001. 1 edition.
[33] S. Reich, C.T., J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties Wiley-VCH, 2004.
[34] S. Yoshimura, R. P. H. C., Supercarbon: Synthesis, Properties and Applications (Springer Series in Materials Science), Springer, 1999. 1 edition.
[35] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Physical Review B, 1998, 58, 14013.
[36] C. Li, T.-W. Chou, Physical Review B, 2004, 69, 73401.
[37] J. P. Lu, Physical Review Letter, 1997, 79, 1297.
[38] R. S. Ruoff, D. C. Lorents, Carbon New York, 1995, 33, 925.
[39] T. Ozaki, Y. Iwasa, T. Mitani, Physical Review Letter, 2000, 84, 1712.
[40] D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, R. E. Smalley, Applied Physics Letters, 1999, 74, 3803.
[41] M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science, 2000, 287, 637.
[42] B. I. Yakobson, C. J. Brabec, J. Bernholc, Physical Review Letter, 1996, 76, 2511.
[43] W. E. Duncanson and C. A. Coulson, Proceedings of the Physical Society. Section A, 1952, 65, 825.
[44] G. Overney, W. Zhong, D. Tománek, Zeitschrift für Physik D., 1993, 27, 93.
[45] C. F. Cornwell, L. T. Wille, Solid State Communications, 1997, 101, 555.
[46] E. Hernandez, C. Goze, P. Bernier, A. Rubio, Physical Review Letter, 1998, 80, 4502.
[47] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature, 1996, 381, 678.
[48] M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, In Graphite Fibers and Filaments Ch6 (eds U. Gonser, A. Mooradian, K. A. Muller, M. B. Panish and H. Sakaki 120-152), Springer, New York, 1998.
[49] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature, 1990, 347, 354.
[50] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science, 1996, 273, 483.
[51] A. M. Rao, E. R., Shunji Bandow, Bruce Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus, Science, 1997, 275, 187.
[52] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassel, H. Dai, Science, 1999, 283, 512.
[53] V. Choudhary, B. P. Singh, R. B. Mathur, Carbon Nanotubes and Their Composites, 2013.
[54] L. Boogh, B. Pettersson and J.-A. E. Månson, Polymer, 1999, 40, 2249-2261.
[55] K. C. Cole, Macromolecules, 1991, 24, 3093-3097.
[56] N. Chikhi, S. Fellahi and M. Bakar, European Polymer Journal, 2002, 38, 251-264.
[57] H. Ishida and D. J. Allen, Polymer, 1996, 37, 4487-4495.
[58] J.H. Lee, C. Y. Koh, J. P. Singer, S.J. Jeon, M. Maldovan, O. Stein and E. L. Thomas, Advanced Materials, 2014, 26, 532-569.
[59] Z.P. Zou, X.B. Liu, Y.P. Wu, B. Tang, M. Chen and X.L. Zhao, RSC Advances, 2016, 6, 18060-18070.
[60] H. P. Mungse, R. Singh, H. Sugimura, N. Kumar and O. P. Khatri, Physical Chemistry Chemical Physics, 2015, 17, 20822-20829.
[61] C. B. Bucknall and A. H. Gilbert, Polymer, 1989, 30, 213-217.
[62] P. G. Parzuchowski, M. Kiźlińska and G. Rokicki, Polymer, 2007, 48, 1857-1865.
[63] S.J. Park and F.L. Jin, Polymer Degradation and Stability, 2004, 86, 515-520.
[64] M. Akatsuka and Y. Takezawa, Journal of Applied Polymer Science, 2003, 89, 2464-2467.
[65] Lee, Henry, and Kris Neville. "Handbook of epoxy resins." (1967).
[66] T. O. N. Spee, C. O. R. Van Duivenbooden and J. Terwoert, Annals of the New York Academy of Sciences, 2006, 1076, 429-438.
[67] P. Innocenzi, T. Kidchob and T. Yoko, J Sol-Gel Sci Technol, 35, 225-235.
[68] A. Toldy, P. Anna, I. Csontos, A. Szabó and G. Marosi, Polymer Degradation and Stability, 2007, 92, 2223-2230.
[69] S. V. Joshi, L. T. Drzal, A. K. Mohanty and S. Arora, Composites Part A: Applied Science and Manufacturing, 2004, 35, 371-376.
[70] U. Österberg and W. Margulis, Opt. Lett., 1986, 11, 516-518.
[71] J. S. Cleveland and A. D. Weidemann, Limnology and Oceanography, 1993, 38, 1321-1327.
[72] M. M. Thwe and K. Liao, Composites Part A: Applied Science and Manufacturing, 2002, 33, 43-52.
[73] Fujita, Masahisa, Paul R. Krugman, and Anthony Venables. The spatial economy: Cities, regions, and international trade. MIT press, 2001.
[74] A. H. Burstein, J. D. Currey, V. H. Frankel and D. T. Reilly, Journal of Biomechanics, 1972, 5, 35-44.
[75] M.F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, Science, 2000, 287, 637-640.
[76] Radmacher, Manfred, 4.-Measuring the Elastic Properties of Living Cells by the Atomic Force Microscope. Methods in cell biology 68.1, 2002, 67-90.
[77] W. L. Hylander, American Journal of Physical Anthropology, 1984, 64, 1-46.
[78] J.-U. Voigt, B. Exner, K. Schmiedehausen, C. Huchzermeyer, U. Reulbach, U. Nixdorff, G. Platsch, T. Kuwert, W. G. Daniel and F. A. Flachskampf, Circulation, 2003, 107, 2120-2126.
[79] M. W. Brown and K. J. Miller, Proceedings of the Institution of Mechanical Engineers, 1973, 187, 745-755.
[80] Menard, Kevin P, Dynamic mechanical analysis: a practical introduction. CRC press, 2008.
[81] Murayama, Takayuki, Dynamic mechanical analysis of polymeric material. Elsevier Scientific Pub. Co., 1978.
[82] Clark, Stewart J., et al, "First principles methods using CASTEP." Zeitschrift fur Kristallographie-Crystalline Materials, 2005, 567-570.
[83] Segall, M. D., et al. "First-principles simulation: ideas, illustrations and the CASTEP code." Journal of Physics: Condensed Matter, 2002, 2717.
[84] Parlinski, K., Z. Q. Li, and Y. Kawazoe. "First-principles determination of the soft mode in cubic ZrO2." Physical Review Letters, 1997, 4063.
[85] Dixon, John. The shock absorber handbook. John Wiley & Sons, 2008.
[86] K. N. Dahl, S. M. Kahn, K. L. Wilson and D. E. Discher, Journal of Cell Science, 2004, 117, 4779-4786.
[87] Reybrouck, Koenraad. A non linear parametric model of an automotive shock absorber. No. 940869. SAE Technical Paper, 1994.
[88] Petek, Nicholas K. An electronically controlled shock absorber using electrorheological fluid. No. 920275. SAE Technical Paper, 1992.
[89] W. Wasel, K. Kuwana, P. T. A. Reilly and K. Saito, Carbon, 2007, 45, 833-838.
[90] K. R. Reddy, H. M. Jeong, Y. Lee and A. V. Raghu, Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48, 1477-1484.
[91] Y. Zhang, M. Zhu, Q. Zhang, H. Yu, Y. Li and H. Wang, Journal of Magnetism and Magnetic Materials, 2010, 322, 2006
[92] J. Gallego, G. Sierra, F. Mondragon, J. Barrault and C. Batiot-Dupeyrat, Applied Catalysis A: General, 2011, 397, 73-81.
[93] R. Atchudan and A. Pandurangan, Journal of Molecular Catalysis A: Chemical, 2012, 355, 75-84.
[94] H. Gu, S. Tadakamalla, X. Zhang, Y. Huang, Y. Jiang, H. A. Colorado, Z. Luo, S. Wei and Z. Guo, Journal of Materials Chemistry C, 2013, 1, 729-743.
[95] Y.H. Lin, Y.C. Lai, C.L. Lu and W.K. Hsu, Journal of Materials Chemistry, 2011, 21, 12485-12488.
[96] W. Fang, H. Y. Chu, W. K. Hsu, T. W. Cheng and N. H. Tai, Advanced Materials, 2005, 17, 2987-2992.
[97] A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, Composites Science and Technology, 2002, 62, 1993-1998.
[98] N. R. Raravikar, P. Keblinski, A. M. Rao, M. S. Dresselhaus, L. S. Schadler and P. M. Ajayan, Physical Review B, 2002, 66, 235424.
[99] Gupta S, Rahaman A, International Journal of Scientific and Research Publications, 2012, 5(2):1-5
[100] T. S. Sene, L. V. d. Silva, S. C. Amico, D. Becker, A. M. Ramirez and L. A. F. Coelho, Materials Research, 2013, 16, 1128-1133.
[101] S.G. Advani, K.T. Hsiao, Manufacturing techniques for polymer matrix composites, Woodhead publishing limited, 2012, pp22-29.
[102] F. Du, J. E. Fischer and K. I. Winey, Physical Review B, 2005, 72, 121404.
[103] L.S. Schadler, S.C. Giannaris, P.M Ajayan, Applied physics letters, 1996 73 (26), 3842-3844
[104] D. D. L. Chung, Journal of Materials Science, 2001, 36, 5733-5737.
[105] K. S. Khare and R. Khare, The Journal of Physical Chemistry B, 2013, 117, 7444-7454.
[106] K. S. Khare, F. Khabaz and R. Khare, ACS Applied Materials & Interfaces, 2014, 6, 6098-6110.