簡易檢索 / 詳目顯示

研究生: 戴子軒
Dai, Tzu-Hsuan
論文名稱: 微流體仿肝臟循環系統晶片應用於提升晶片中肝臟細胞肝功能之研究
Construction and Development of Liver Circulatory System for the Study of Liver Function Enhancement
指導教授: 劉承賢
Liu, Cheng-Hsien
口試委員: 徐琅
張晃猷
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 74
中文關鍵詞: 組織工程肝臟循環系統微流體介電泳細胞排列技術
外文關鍵詞: tissue engineering, liver circulatory system, microfluidics, dielectrophoresis, cell pattern technology
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數十年來,肝病一直列在國人十大死亡因素之中,相關藥物的開發、測試,一直都是醫藥科學發展的重點。一種藥物從開發到達上市,需要歷經無數次的實驗測試,以確保藥物的安全性以及有效性。因此,藥物實驗平台的開發成為近幾年生物醫學研究發展的重點之一。
    而傳統醫學的研究又可以分為體內研究以及體外研究來進行,生物的活體內研究雖然擁有與真實生物體較高的相似度,可以比較真實反映出生物體對藥物所出現的反應,同時也因為生物個體因為複雜度高,如需針對特定反應做觀察、研究,相對較不易,且使用活個體進行實驗較容易會有法律以及道德層面的問題。而體外研究的優點就是可以針對欲研究的目標創造一個模擬的生物環境,其環境可以經由人為控制,相較之下單純許多,容易用來進行研究及觀察,只是其與生物體的功能性差異,也是各項研究所要努力克服的目標。
    本研究中提出利用微流體晶片技術以及細胞操控技術,設計晶片以製造出更接近於真實人體組織的體外組織晶片為目標。本研究所提出的體外仿肝組織循環系統晶片包含了二個重要的特色:(1)利用介電泳細胞操控技術,操縱數種細胞於不同的晶片區域中,製成模仿血管環境的血管晶片區域以及模仿肝的放射狀肝小葉組織的晶片區域;(2)利用微流體晶片的設計,建立一仿肝小葉流場,並且模仿體內肝組織體液循環的順序,建立一完整的體外仿肝循環系統實驗室晶片。
    經由肝功能尿素檢測實驗結果顯示,此系統所提供的微環境,其中包含血管環境、肝組織、肝小葉流場,能夠成功提升肝細胞的尿素分泌表現量達78%。目前為止,仿肝組織循環的研究鮮少被提出,此研究的目標希望以體外重建工程,建立一仿肝實驗室晶片,使其越接近於人體真實肝組織環境,並且期望可以應用於藥物篩選、檢測的應用中。


    In the past decade, liver disease has been one of the top ten death causes. Medical science researchers have focused on the development and testing of required drug. The effective functioning and safety of a new developed drug must be ensured via numerous experiments before reaching the market. Therefore, the developments of drug experiment platform become the focal point of biomedical research in recent years.
    Conventional biomedical studies are carried out either in vivo or in vitro. In vivo research utilizing intact organisms can provide high resemblance to the real physiological conditions. However, the variations in experimental results are relatively high due to the high complication of organisms and the great diversity of entities. It is also difficult to observe the biological processes in whole organisms. The problems of laws and morality must also be considered. However, the advantage of in vitro studies is that the simulated biological environment can be created depending on the research target. The environment can be controlled and it is easier to observe and manipulate. But it is unable to reflect the complex physiological responses found in vivo.
    In this research, we propose an in vitro liver circulatory system via the concept of cell pattern technology and microfluidic system. There are two features of the proposed liver Labchip: (1) Mimicking the condition of blood vessel and liver-lobule-mimetic engineered tissue. To achieve this we have manipulated four kinds of cells in two different bio-chambers via DEP cell patterning technology. (2) Mimicking the circulatory system and condition of blood flow in the liver lobule. To accomplish this two bio-chambers were connected via the lobule-flow-mimic microchannel. The experimental results reveal that the liver-specific function, urea secretion of this proposed in vitro liver circulatory system show 78% of enhancement when compared with absent liver circulatory system. In recent years, only few researchers made an attempt to combine the engineered liver tissue with a liver circulatory-like fluidic system. The proposed research shows some exciting initiative results in liver tissue reconstruction. The ultimate goal of the present research is to construct in vitro liver tissue and make it closer to the actual liver functioning. This research will be an useful tool for developing platform of drug testing and screening.

    ABSTRACT I 中文摘要 II TABLE OF CONTENTS III LIST OF FIGURES V CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND AND MOTIVATION 1 1.1.1 MEMS and Lab on chip 1 1.1.2 Tissue engineering 1 1.2 MOTIVATION AND OBJECTIVE 3 1.3 SURVEY OF LITERATURE 5 1.3.1 Hepatic tissue engineering 5 1.3.1.1 Function and structure 5 1.3.1.2 Cell type - hepatocyte 7 1.3.1.3 Cell type - Endothelial cell and Smooth Muscle cell 8 1.3.2 Cell patterning technologies 10 1.3.2.1 Photolithography 10 1.3.2.2 Microcontact printing 11 1.3.2.3 Microfluidic patterning using microchannels. 12 1.3.2.4 Cell patterning using dielectrophoresis 13 1.3.3 Connected micro fluidics system 14 CHAPTER 2 DEVICE DEVELOPMENT 16 2.1 BACKGROUND REVIEW 16 2.1.1 Liver function 16 2.1.2 Dielectrophoresis 17 2.1.2 Microfluidics 21 2.2 DESIGN CONCEPT 23 2.2.1 Design of live-circular-system microchannel 23 2.2.2 Design of Blood Vessel Chamber 23 2.2.2.1 Operation principle of ratio control patterning 26 2.2.2.2 Numerical simulation of snow-flake-like electrode 28 2.2.3 Design of lobule-mimetic-stellate electrode 32 2.2.3.1 Operation principle of lobule-mimetic liver cell patterning 34 2.2.3.2 Numerical simulation of lobule-mimetic-stellate electrode 36 2.2.3 Design of lobule-flow-mimic microfluidics system 40 2.2.3.1 Numerical simulation of microfluidics system 44 CHAPTER 3 MICRO FABRICATION 48 3.1 PROCESS FLOW 48 3.2 FABRICATION RESULTS 50 CHAPTER 4 EXPERIMENTAL SETUP AND METHOD 51 4.1 CELL MATERIALS 51 4.2 CELL PREPARATION FOR DEP MANIPULATION 51 4.3 SURFACE MODIFICATION FOR ENHANCING THE CELL-TO-SUBSTRATE ADHESION 52 4.4 EXPERIMENTAL SETUP 52 4.5 THE PARAMETER SETUP FOR DEP OPERATION 53 CHAPTER 5 RESULTS AND DISCUSSION 55 5.1 OFF-CHIP EXPERIMENTS 55 5.1.1 Independent cell urea assay 55 5.1.2 Off-chip cell environment test 55 5.2 ON-CHIP EXPERIMENT AND RESULT 57 5.2.1 Pattern result of blood vessel chamber 57 5.2.1.1 Microfluidic system setup for blood vessel patterning 57 5.2.1.2 On-chip HMEC-1 pattern result of blood vessel chamber 58 5.2.1.3 On-chip C2C12 pattern result of blood vessel chamber 60 5.2.2 Pattern result at liver-lobule-mimetic chamber 62 5.2.2.1 Microfluidic system setup for liver-lobule-mimetic patterning 62 5.2.2.2 On-chip HepG2 pattern result at liver-lobule-mimetic chamber 62 5.2.2.3 On-chip 3T3 pattern result at liver-lobule-mimetic chamber 64 5.2.3 On-chip urea assay of liver circular microfluidic system 65 5.2.3.1 Microfluidic system preparation and sample collection. 65 5.2.3.2 On-chip urea assay results 66 CHAPTER 6 CONCLUSION 68 REFERENCE 69

    [1] R. Langer and J. P. Vacanti, “Tissue engineering,” Science, VOL 260, 920-926, 14 May 1993.
    [2] L. V. McIntire, H. P. Greisler, L. Griffith, P. C. Johnson, D. J. Mooney, M. Mrksich, N. L. Parenteau, D. Smith, “WTEC Panel Report on Tissue Engineering Research,” International Technology Research Institute, January 2002.
    [3] L. Griffith and G. Naughton, “Tissue Engineering - Current Challenges and Expanding Opportunities,” Science, VOL 295, 1009-1014, 8 Feb 2002.
    [4] S. J. Hollister, “Porous scaffold design for tissue engineering,” Nature materials, VOL 4, 518-524, July 2005.
    [5] D. Metcalfe and M.W.J. Ferguson, “Bioengineering skin using mechanisms of regeneration and repair,” Biomaterals, VOL 28, 5100-5113, 3 Aug 2007.
    [6] R. P. Lanza, R. S. Langer and J. Vacanti, “Principle of tissue engineering, Academic press,” San Diego, 2000.
    [7] C. Chung and J. A. Burdick, “Engineering cartilage tissue,” Advanced Drug Delivery Reviews, VOL 60, 243-262, 2008.
    [8] K. Nishida, M. Yamato, Y. Hayashida, et al, “Corneal reconstruction with tissue-engineered cell sheets composed of antologous oral mucosal epithelium,” The New England Journal of Medicine, VOL 351, 1187-1196, 16 September 2004.
    [9] A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc Natl Acad Sci USA, VOL 103, 2480-2487, 21 February 2006.
    [10] H. Andersson, and A. V. D. Berg, “Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities,” Lab Chip, VOL 4, 98-103, 2004.
    [11] A. Kikuchi and T. Okano, “Nanostrutured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs,” Journal of Control Release, VOL 101(1-3), 69-84, January 2005.
    [12] Y. Nahmias, R.E. Schwartz, C.M. Verfaillie and D.J. Odde, “Laser-guided direct writing for three-dimensional tissue engineering,” Biotechnol Bioeng, VOL 92, 129-136, 2005.
    [13] R. Taub, “Liver regeneration: from myth to mechanism,” Nature Reviews Molecular Cell Biology, VOL 5, 836-847, 2004.
    [14] J. R. Fuchs, B.A. Nasseri and J.P. Vacanti, “Tissue engineering: a 21st century solution to surgical reconstruction,” Ann. Thorac. Surg., VOL 72, 577-591, 2001.
    [15] J. Tsiaoussis, P. N. Newsome, L. J. Nelson, P. C. Hayes and J. N. Plevris, “Which hepatocyte will it be ? Hepatocyte choice for bioartifical liver support systems,” Liver Tansplantation, VOL 7, 2-10, 2001.
    [16] D. Falconnet, G. Csucs, H. Michelle and M. Textor, “Surface engineering approaches to micropattern surfaces for cell-based assays,” Biomaterials, VOL 27, 3044-3063, 2006.
    [17] K. Bhadriraju and C. S. Chen, “Engineering cellular microenvironments to improve cell-based drug testing,” Drug Discovery Today, VOL 7, 612-620, 2002.
    [18] A. Khademhosseini, R. Langer, J. Borenstein and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci., VOL 103, 2480-2487, 2006.
    [19] B. D. Foy, A. Rotem, M. Toner, R. G. Tompkins and M. L. Yarmush, “A device to measure the oxygen uptake rate of attached cells: importance in bioartificial organ design,” Cell Transplant, VOL 3, 515-527, 1994.
    [20] G. I. Nedredal, K. H. Elvevold et al., “Liver sinusoidal endothelial cells represents an important blood clearance system in pigs,” Comp Hepatol, VOL 2, 3 January 2003.
    [21] T. D. Sielaff, M. Y. Hu, S. Rao, K. Groehler, D. Olson, H. J. Mann, R. P. Remmel, R. A. Shatford, B. Amiot and W. S. Hu et al., “A technique for porcine hepatocyte harvest and description of differentiated metabolic functions in static culture,” Transplantation, VOL 59, 1459–1463, 1995.
    [22] A. A. Te Velde, N. C. Ladiges, L. M. Flendrig and R. A. Chamuleau, “Functional activity of isolated pig hepatocytes attached to different extracellular matrix substrates. Implication for application of pig hepatocytes in a bioartificial liver,” J. Hepatol, VOL 23, 184–192, 1995.
    [23] P. G. Gregory, C. K. Connolly, M. Toner and S. J. Sullivan, “In vitro characterization of porcine hepatocyte function,” Cell Transplant, VOL 9, 1–10, 2000.
    [24] R. Z. Lin, C. T. Ho, C. H. Liu and H. Y. Chang, “Dielectrophoresis based-cell ptterning for tissue engineering,” Biotechnol J, VOL 1, 949-957, 2006.
    [25] M. Dou, G. de Sousa, B. Lacarelle, M. Placidi, P. la Porte, M. Domingo, H. Lafont and R. Rahmani, “Thawed human hepatocytes in primary culture,” Cryobiology, VOL 29, 454–469, 1992.
    [26] D. Runge, D. M. Runge, D. Jager, K. A. Lubecki, D. Beer Stolz, S. Karathanasis, T. Kietzmann, S. C. Strom, K. Jungermann, W. E. Fleig and G. K. Michalopoulos, “Serum-free, long-term cultures of human hepatocytes: maintenance of cell morphology, transcription factors, and liver-specific functions,” Biochem. Biophys. Res. Commun, VOL 269, 46–53, 2000.
    [27] A. Werner, S. Duvar, J. Muthing, H. Buntemeyer, U. Kahmann, H. Lunsdorf and J. Lehmann, “Cultivation and characterization of a new immortalized human hepatocyte cell line, HepZ, for use in an artificial liver support system,” Ann. NY Acad. Sci., VOL 875, 364–368, 1999.
    [28] S. M. Cascio, “Novel strategies for immortalization of human hepatocytes,” Artif. Organs, VOL 25, 529–538, 2001.
    [29] S. Wilkening, F. Stahl and A. Bader, “Comparison of primary human hepatocytes and hepatoma cell line HepG2 with regard to their biotransformation properties,” Drug Metab. Dispos, VOL 31, 1035–1042, 2003.
    [30] M. Louha, K. Poussin, N. Ganne, H. Zylberberg, B. Nalpas, J. Nicolet, F. Capron, O. Soubrane, C. Vons, S. Pol, M. Beaugrand, P. Berthelot, D. Franco, J. C. Trinchet, C. Brechot And P. Paterlini, “Spontaneous and iatrogenic spreading of liver-derived cells into peripheral blood of patients with primary liver cancer,” Hepatology, VOL 26, 998–1005, 1997.
    [31] B. E. Sumpio, J. T. Riley, A. Dardik, “Cells in focus: endothelial cell,” The International Journal of Biochemistry & Cell Biology, VOL 34, 1508–1512, 2002.
    [32] H. M. Blau, G. K. Pavlath, E. C. Hardeman., C. P. Chiu, L. Silberstein, S. G. Webster. S. C. Miller, C. Webster “Plasticity of the differentiated state”, Science, VOL 230, 758-766, 1985.
    [33] S. Britland, P. Clark and G. Moores, “Micropatterned substratum adhesiveness: a model for morphogenic cues controlling cell behavior,” Exp. Cell Res., VOL 198, 124–129, 1992.
    [34] S. Bhatia, M. Yarmusch and M. Toner, “Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts,” J. Biomed. Mater. Res., VOL 34, 189–199, 1997.
    [35] K. Healy, C. Thomas, A. Rezania, J. Kim, P. McKeown, B. Lom and P. Hockberger, “Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry,” Biomaterials, VOL 17, 195–208, 1996.
    [36] B. Lon, K. E. Healy and P. E. Hockberger, “A versatile technique for patterning biomolecules onto glass coverslips,” J. Neurosci. Methods, VOL 50, 385-397, 1993.
    [37] D. Falconnet, G. Csucs, H. M. Grandin and M. Textor, “Surface engineering approaches to micropattern surfaces for cell-based assays,” Biomaterials, VOL 27, 3044-3063, 2006.
    [38] C. P. Tan, Bo Ri Seo, D. J. Brooks, E. M. Chandler, H. G. Craighead and C. Fischbach, “Parylene peel-off arrays to probe the role of cell–cell interactions in tumour angiogenesis,” he Royal Society of Chemistry,Christine, VOL 1, 587-594, 2009.
    [39] S. R. Khetani, G. Szulgit, J. A. Del Rio, C. Barlow and S. N. Bhatia, “Exploring interactions between rat hepatocytes and nonparenchymal cells using gene expression profiling,” Hepatology, VOL 40, 545–554, 2004.
    [40] S. R. Khetani and S. N. Bhatia, “Microscale culture of human liver cells for drug development,” Nature Biotechnology, VOL 26, 120-126, 2007.
    [41] S. N. Bhatia, M. Yarmusch and M. Toner, “Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts,” J. Biomed. Mater. Res., VOL 34, 189-199, 1997.
    [42] S. N. Bhatia, U. J. Balis, M. L. Yarmush and M. Toner, “Probing heterotypic cell interactions: hepatocyte function in microfabricated co-cultures,” J. Biomater. Sci. Polymer Ed., VOL 9, 1137-1160, 1998.
    [43] S. N. Bhatia, U. J. Balis, M. L. Yarmush and M. Toner, “Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells,” FASEB, VOL 13, 1883-1900, 1999.
    [44] M. Mrksich, L. E. Dike, J. Tein, D. E. Ingber and G. M. Whitesides, “Microcontact Printing on Pattern the Attachment on Mammalian Cells to Self-Assembled Monolayers of Alkanethiolates on Transparent Films of Gold and Silver,” Exp. Cell. Res., VOL 235, 305-313, 1997.
    [45] R. S. Kane, S. Takayama, E. Ostuni, D. Ingber and G. M. Whitesdes, “Patterning proteins and cells using soft lithography,” Biomaterials, VOL 20, 2363-2376, 1999.
    [46] G. P. Lopez, M. W. Alberts, S. L. Schreiber, et al., “Convenient methods for patterning the adhesion of mammalian cells to surfaces using self-assembled monolayers of alkanethiolates on gold.” J. Am. Chem. Soc., VOL 115, 5877-5578, 1993.
    [47] G. P. Lopez, H. A. Biebuyck, R. Härter, A. Kumar and G. M. Whitesides, “Fabrication and imaging of two-dimensional patterns of proteins adsorbed on self-assembled monolayers by scanning electron microscopy,” J. Am. Chem. Soc., VOL 115, 10774-10781, 1993.
    [48] C. S. Chen, M. Mrksich, S. Huang, G. M. whitesides, and D. E. Ingber, “Micropatterned surfaces for control of cell shape, position, and function,” Biotechnol. Prog., VOL 14, 356-363, 1998.
    [49] C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides and D. E. Ingber, “Geometric control of cell life and death,” Science, VOL 276, 1425-1428, 1997.
    [50] A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching,” Appl. Phys. Lett., VOL 63, 2002-2004, 1993.
    [51] R. J. Jackman, J. L. Wilbur and G. M. Whitesides, “Fabrication of submicron features on curved substrates by microcontact printing,” Science, VOL 269, 664-666, 1995.
    [52] A. Folch and M. Toner, “Cellular Micropatterns on Biocompatible Materials,” Biotechnol. Prog., VOL 14 (3), 388-392, 1998.
    [53] J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, et al., “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem., VOL 72, 3158-3164, 2000.
    [54] D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, D. E. Ingber, and G. M. Whitesides, “Patterned deposition of cells and protein onto surfaces by three-dimensional microfluidic systems,” PNAS, VOL 97, 2408-2413, 2000.
    [55] S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber and G. M. Whitesides, “Laminar flow: Subcellular positioning of small molecules,” Nature, VOL 411, 1016, 2001.
    [56] T. Matsue, N. Matsumoto and I. Uchida, “Rapid micropatterning of living cells by repulsive dielectrophoretic force,” Electrochimica Acta, VOL 42, 3251-3256, 1997.
    [57] N. Mittal, A. Rosenthal and J. Voldman, “nDEP microwells for single-cell patterning in physiological medium,” Lab chip, VOL 7, 1146-1153, 2007.
    [58] D. S. Gray, J. L. Tan, J. Voldman and C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosens. Bioelectron., VOL 19, 771-780, 2004.
    [59] D. R. Albrecht, V. L. Tsang, R. L. Sah and S. N. Bhatia, “Photoand electropatterning of hydrogel-encapsulated living cell array,” Lab Chip, VOL 5, 111-118, 2005.
    [60] S. M. Yang, T. M. Yu, H. P. Huang, M. Y. Ku, L. Hsu, and C. H. Liu, “Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis,” Optics Letters, VOL 35, 2010
    [61] P. Y. Chiou, A. T. Ohta and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, VOL 436, 2005.
    [62] F. Vozzi, J. M. Heinrich, A. Bader, and A. D. Ahluwalia, “Connected Culture of Murine Hepatocytes and Human Umbilical Vein Endothelial Cells in a Multicompartmental Bioreactor,” Tissue engineering: Part A, VOL 15, 2009.
    [63] J. H. Sung and M. L. Shuler, “A micro cell culture analog (μCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs,” Lab Chip, VOL 9, 1385–1394, 2009.
    [64] M. P. Hughes, Nanoelectromechanics in Enginnering and Biology, CRC Press, Boca Raton, FL, 2003.
    [65] T. B. Jone, Electromechanics of particles, Cambridge University Press, 1995.
    [66] P. R. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis, VOL 23, 1973-1983, 2002.
    [67] J. Voldman, M. L. Gray, M. Toner and M. A. Schmidt, “A microfabrication based dynamic array cytometer,” Anal Chem, VOL 74, 3984-3990, 2002.
    [68] T. Matsue, N. Matsumoto and I. Uchida, “Rapid micropatterning of living cells by repulsive dielectrophoretic force,” Electrochimica Acta, VOL 42, 3251-3256, 1997.
    [69] F. M. White, Viscous Fluid Flow, McGraw-Hill Companies, Inc, Boston, 2006.
    [70] C. B. Weinberg and E. Bell, “A blood vessel model constructed from collagen and cultured vascular cells,” Science, VOL 231, 397-400, 1986.
    [71] N. L'Heureux, et al., “A completely biological tissue-engineered human blood vessel,” FASEB J, VOL 12, 47-56, 1998.
    [72] L. Fontana, D. Jerez, L. Rojas-Valencia, J. A. Solis-Herruzo, P. Greenwel, M. Rojkind, “Ethanol induces the expression of alpha 1(I) procollagen mRNA in a co-culture system containing a liver stellate cell-line and freshly isolated hepatocytes,” Biochim Biophys Acta,, VOL 1362, 135-144, 1997.
    [73] U. Zimmermann, Electromanipulation of Cells, CRC Press, London, 1996.
    [74] U. Zimmermann, U. Friedrich, H. Mussauer, P. Gessner, K. Hämel and V. Sukhorukov, “Electromanipulation of mammalian cells: fundamentals and application,” IEEE T. Plasma Sci., VOL 28, 72-82, 2000.
    [75] P. R. Gascoyne and J. V. Vykoukal, “Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments,” P. IEEE, VOL 92, 22-40, 2004.
    [76] C. C. Cunningham and C. G. Van Horn, “Energy availability and alcohol-related liver pathology,” Alcohol Research & Health, VOL 27, 281-299, 2003.
    [77] C. T. Ho, R. Z. Lin, W. Y. Chang, H. Y. Chang and C. H. Liu, “Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap,” Lab Chip, VOL 6, 724-734, 2006.
    [78] Blue Histology, School of Anatomy and Human Biology - The University of Western Australia.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE