研究生: |
羅正銘 Lo, Cheng-Ming |
---|---|
論文名稱: |
果蠅乙醯基轉移酶類似蛋白第二型之結構暨功能分析 - 揭示其酶活性所需的關鍵殘基 Structure-function analysis of Drosophila melanogaster Arylalkylamine N-Acetyltransferases Like 2 protein - uncovering the key residues required for enzyme activity |
指導教授: |
呂平江
Lyu, Ping-Chiang |
口試委員: |
蘇士哲
Sue, Shih-Che 蕭乃文 Hsiao, Nai-Wan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 乙醯基轉移酶 、乙醯化作用 、乙醯輔酶A 、等溫滴定微量熱儀 、結合親和力 、熱力學 、艾爾曼的試劑 、定位突變 、酵素動力學 、蛋白質結構 |
外文關鍵詞: | Arylalkylamine N-acetyltransferase like, Acetyl-coenzyme A, binding order in radom fashion, Ellman's reagent |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在果蠅中,經由乙醯輔酶A(acetyl-coenzyme A)所進行的乙醯化作用(N-acetylation)是個重要的步驟,其涉及了神經傳導物質的分解、褪黑素的合成、角質層硬化、色素沉澱及晝夜週期。現今,只有四個芳烴基烷基胺乙醯基轉移酶(arylalkylamine N-acetyltransferase, AANAT)被解析出結構,其中之一就是多巴胺乙醯基轉移酶(dopamine N-acetyltransferase, Dat)。它是在黑腹果蠅中唯一被辨認的。但2000年,有幾種推測與AANAT類似的酵素被鑑定出來。這些AANATL酵素和Dat之間有30%的序列相同性和50%的序列相似性,但是他們也催化乙醯化作用。我們對AANATL2非常有興趣,因為它以相同的芳烴基烷基胺作為受質,但能接受較長鏈的醯基輔酶作為輔因子。在蛋白質與配體結合的分析中,我們發現AANATL2可以分別結合受質與輔因子。這意味著AANATL2遵循著隨機結合順序,然而,其他AANATLs與AANATs需要有順序地結合配體。為了更詳細地瞭解AANATL2,我們試圖得到AANATL2晶體結構。但非常不幸運的,全部得到的晶體皆無法使用。為了辨別出AANATL2關鍵的殘基,我們將Dat之序列與結構對齊分析,以決定突變與功能分析的候選殘基。被挑選的殘基麩胺酸29、絲胺酸167與絲胺酸171和催化有關,麩胺醯胺28與精胺酸138和輔因子結合有關,苯丙胺酸25和受質結合有關。半胱胺酸166接近催化位且涉及維持催化位結構。首先,突變株在圓二色性(CD)光譜上分析,二級結構大致上都有形成且與野生型相似,以確認突變株皆不影響結構。結合ITC、DTNB分析與模擬結構分析的結果,我們試圖解釋這些關鍵殘基在結構與活性上的關係。所有突變株相對於野生型在催化活性上都有衰退,絲胺酸171突變株甚至完全失去催化能力。苯丙胺酸25突變株被分析顯示造成受質與乙醯輔酶A結合力下降。麩胺醯胺28突變株將造成催化活性下降且不影響乙醯輔酶A結合,所以我們認為其區域性影響麩胺酸29。精胺酸138突變株確實造成乙醯輔酶A結合力下降。半胱胺酸166具保守性且接近絲胺酸167,半胱胺酸166突變株顯示沒有影響乙醯輔酶A結合的結果,所以我們認為其區域性影響絲胺酸167,造成催化能力下降。我們的數據顯示,麩胺酸29、絲胺酸167與絲胺酸171參與了催化,如同Dat的催化三元組,然而,絲胺酸167也影響輔因子的結合。本篇研究發現了AANATL2與其它AANATs或AANATLs顯著不同之處,就是AANATL2遵循著隨機結合順序,本篇研究也提供我們對於AANATL2的特性與功能殘基更多的了解。
Acetyl coenzyme A (Ac-CoA) dependent N-acetylation in Drosophila is a critical process involved in neurotransmitter catabolism, biosynthesis of melatonin, cuticle sclerotization, pigmentation and circadian cycle. To date, only four arylalkylamine N-acetyltransferases (AANATs) have known structures. One of them is dopamine N-acetyltransferase (Dat), which is the only one identified AANAT in Drosophila melanogaster. But since year 2000, several putative AANAT-like enzymes have been identified in Drosophila melanogaster. The AANAT-like enzymes share only 30% sequence identity and 50% similarity with Dat, but they also catalyze the N-acetylation. We were interested in AANATL2 because it used the same arylalkylamine substrate, but accept longer chain acyl-CoA as cofactor. In protein-ligands binding assay (by isothermal titration calorimetry, ITC), we found out that AANATL2 can bind to Ac-CoA and PEA individually. It means that AANATL2 follows a binding mechanism in random fashion, however other AANATs or AANATLs follows an ordered sequential mechanism. To understand more detail about the structure-activity relationship of AANATL2, we tried to determine the crystal structures of AANATL2 apo form and AANATL2/Ac-CoA binary complex. But unfortunately, all crystals data was unusable and probably was salt. To identify the critical residues in AANATL2, alignments of sequence and structure with Dat were both used to decide the candidates for mutagenesis and functional assay. The selected residues were catalysis related E29, S167, and S171, Ac-CoA binding related Q28 and R138, as well as substrate binding related F25. C166 was close to active site and may involve in holding the structure of active site. Based on circular dichroism (CD) data, the overall secondary structures of mutants are similar to that of AANATL2 wild-type, so we confirmed that these residues did not affect structures. Combined with the results of ligands binding (ITC), catalysis function (DTNB assay), and structural analysis of modelling AANATL2 ternary complex, we tried to explain the structure-activity relationship of these selected residues. The catalytic abilities of all mutants were reduced in DTNB assay, while S171A even totally lost the catalytic capability. The ITC data revealed that F25A not only largely lost the binding ability to substrate, but also had decreased Ac-CoA binding ability. Q28A did not affect Ac-CoA binding but still resulted in loss of catalysis, so we proposed that Q28 may affect E29 via unclear local effect. R138A indeed caused significantly decreased Ac-CoA binding affinity. C166 as a highly conserved residue next to S167, C166A showed no influence to Ac-CoA binding but only kept 60% catalysis activity. Therefore, we proposed that C166A may offer local effect on S167, and resulted in the loss of catalysis. Our data indicated that E29, S167 and S171 may participate in catalysis, like their corresponding catalytic triad in Dat, while S167A also reduced Ac-CoA binding. This study found out a significant difference among AANATL2 and other AANATs or AANATLs, which is that AANATL2 binds to ligands in a random fashion. And this study also provides us a better understanding of the enzyme characteristics and functional residues of AANATL2.
1. BRODBECK, D., et al., Molecular and Biochemical Characterization of the aaNATl (Dat) Locus in Drosophila melanogaster: Differential Expression of Two Gene Products. DNA and cell biology, 1998. 17(7): p. 621-633.
2. Sloley, B.D., Metabolism of monoamines in invertebrates: the relative importance of monoamine oxidase in different phyla. Neurotoxicology, 2004. 25(1-2): p. 175-183.
3. Dewhurst, S.A., et al., Metabolism of biogenetic amines in drosophila nervous tissue. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1972. 43(4): p. 975-981.
4. Hickman, A.B., D.C. Klein, and F. Dyda, Melatonin Biosynthesis: The Structure of Serotonin N-Acetyltransferase at 2.5 Å Resolution Suggests a Catalytic Mechanism. Molecular Cell, 1999. 3(1): p. 23-32.
5. Kramer, K.J., et al., Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron, 2001. 57(2): p. 385-392.
6. Andersen, S.O., Insect cuticular sclerotization: a review. Insect biochemistry and molecular biology, 2010. 40(3): p. 166-178.
7. Osanai-Futahashi, M., et al., A visible dominant marker for insect transgenesis. Nature communications, 2012. 3: p. 1295.
8. Klein, D.C. and J.L. Weller, Rapid light-induced decrease in pineal serotonin N-acetyltransferase activity. Science, 1972. 177(4048): p. 532-533.
9. O'Flynn, B.G., A.J. Hawley, and D.J. Merkler, Insect arylalkylamine N-acetyltransferases as potential targets for novel insecticide design. Biochemistry & molecular biology journal, 2018. 4(1).
10. Dempsey, D.R., et al., Mechanistic and structural analysis of Drosophila melanogaster arylalkylamine N-acetyltransferases. Biochemistry, 2014. 53(49): p. 7777-7793.
11. Cheng, K.-C., J.-N. Liao, and P.-C. Lyu, Crystal structure of the dopamine N-acetyltransferase–acetyl-CoA complex provides insights into the catalytic mechanism. Biochemical Journal, 2012. 446(3): p. 395-404.
12. De Angelis, J., et al., Kinetic analysis of the catalytic mechanism of serotonin N-acetyltransferase (EC 2.3. 1.87). Journal of Biological Chemistry, 1998. 273(5): p. 3045-3050.
13. Vetting, M.W., et al., Structure and functions of the GNAT superfamily of acetyltransferases. Archives of biochemistry and biophysics, 2005. 433(1): p. 212-226.
14. Dyda, F., D.C. Klein, and A.B. Hickman, GCN5-related N-acetyltransferases: a structural overview. Annual review of biophysics and biomolecular structure, 2000. 29(1): p. 81-103.
15. Salah Ud-Din, A., A. Tikhomirova, and A. Roujeinikova, Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT). International journal of molecular sciences, 2016. 17(7): p. 1018.
16. Wolf, E., et al., Crystal Structure of a GCN5-Related N-acetyltransferase: Serratia marcescens Aminoglycoside 3-N-acetyltransferase. Cell, 1998. 94(4): p. 439-449.
17. Wolf, E., et al., X-ray crystallographic studies of serotonin N-acetyltransferase catalysis and inhibition. Journal of molecular biology, 2002. 317(2): p. 215-224.
18. Hickman, A.B., et al., The structural basis of ordered substrate binding by serotonin N-acetyltransferase: enzyme complex at 1.8 Å resolution with a bisubstrate analog. Cell, 1999. 97(3): p. 361-369.
19. Han, Q., et al., Evolution of insect arylalkylamine N-acetyltransferases: structural evidence from the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A, 2012. 109(29): p. 11669-74.
20. Wiseman, T., et al., Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Analytical biochemistry, 1989. 179(1): p. 131-137.
21. Saponaro, A., Isothermal Titration Calorimetry: A Biophysical Method to Characterize the Interaction between Label-free Biomolecules in Solution. Bio-protocol, 2018. 8(15).
22. Lin, F.-W., Study of stustrate-entrance tunnel of Dopamine N-acetyltransferase from Drosophila melanogaster, in Institute of Bioinformatics and Structural Biology. 2014, National Tsing Hua University. p. 84.
23. Yang, C.C., The size effect of substrate-entrance tunnel of Dopamine N-acetyltransferase on its enzyme activity, in Institute of Molecular Medicine. 2015, National Tsing Hua University. p. 71.
24. Ding, W.C., Study of the ordered sequential mechanism and critical residues in binding site of Drosophila melanogaster dopamine N-acetyltransferase, in Institute of Bioinformatics and Structural Biology. 2016, National Tsing Hua University. p. 90.
25. Liao, J.-N., Enzyme kinetic and substrate/ligand binding of Drosophila dopamine N-acetyltransferase, in Institute of Bioinformatics and Structural Biology. 2012, National Tsing Hua University. p. 73.
26. Lin, H.-J., Structural Basis for the Activity and Substrate Specificity of Dopamine N-acetyltransferase, in Institute of Bioinformatics and Structural Biology. 2013, National Tsing Hua University. p. 86.
27. Dempsey, D.R., et al., Identification of an arylalkylamine N‐acyltransferase from Drosophila melanogaster that catalyzes the formation of long‐chain N‐acylserotonins. FEBS letters, 2014. 588(4): p. 594-599.
28. Farrell, E.K. and D.J. Merkler, Biosynthesis, degradation and pharmacological importance of the fatty acid amides. Drug discovery today, 2008. 13(13-14): p. 558-568.
29. Dempsey, D.R., et al., Mechanistic and structural analysis of a Drosophila melanogaster enzyme, arylalkylamine N-acetyltransferase like 7, an enzyme that catalyzes the formation of N-acetylarylalkylamides and N-acetylhistamine. Biochemistry, 2015. 54(16): p. 2644-2658.
30. Dempsey, D.R., et al., Probing the chemical mechanism and critical regulatory amino acid residues of Drosophila melanogaster arylalkylamine N-acyltransferase like 2. Insect biochemistry and molecular biology, 2015. 66: p. 1-12.
31. Amherd, R., et al., Purification, cloning, and characterization of a second arylalkylamine N-acetyltransferase from Drosophila melanogaster. DNA and cell biology, 2000. 19(11): p. 697-705.
32. Sievers, F., et al., Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular systems biology, 2011. 7(1).
33. Dempsey, D.R., et al., Structural and Mechanistic Analysis of Drosophila melanogaster Agmatine N-Acetyltransferase, an Enzyme that Catalyzes the Formation of N-Acetylagmatine. Sci Rep, 2017. 7(1): p. 13432.
34. Waterhouse, A., et al., SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 2018. 46(W1): p. W296-W303.
35. Bienert, S., et al., The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Research, 2016. 45(D1): p. D313-D319.
36. Duhovny, D., R. Nussinov, and H.J. Wolfson. Efficient unbound docking of rigid molecules. in International workshop on algorithms in bioinformatics. 2002. Springer.
37. Dallakyan, S. and A.J. Olson, Small-molecule library screening by docking with PyRx, in Chemical biology. 2015, Springer. p. 243-250.
38. Laskowski, R.A. and M.B. Swindells, LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. 2011, ACS Publications.
39. Wallace, A.C., R.A. Laskowski, and J.M. Thornton, LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein engineering, design and selection, 1995. 8(2): p. 127-134.
40. Schrodinger, LLC, The AxPyMOL Molecular Graphics Plugin for Microsoft PowerPoint, Version 1.8. 2015.
41. Schrodinger, LLC, The JyMOL Molecular Graphics Development Component, Version 1.8. 2015.
42. Schrodinger, LLC, The PyMOL Molecular Graphics System, Version 1.8. 2015.
43. Ellman, G.L., Tissue sulfhydryl groups. Archives of biochemistry and biophysics, 1959. 82(1): p. 70-77.
44. Collier, H.B., A note on the molar absorptivity of reduced Ellman's reagent, 3-carboxylato-4-nitrothiophenolate. Analytical biochemistry, 1973. 56(1): p. 310.
45. Riddles, P.W., R.L. Blakeley, and B. Zerner, [8] Reassessment of Ellman's reagent, in Methods in Enzymology. 1983, Academic Press. p. 49-60.
46. Riener, C.K., G. Kada, and H.J. Gruber, Quick measurement of protein sulfhydryls with Ellman's reagent and with 4, 4′-dithiodipyridine. Analytical and bioanalytical chemistry, 2002. 373(4-5): p. 266-276.
47. Manavalan, P. and W.C. Johnson Jr, Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Analytical biochemistry, 1987. 167(1): p. 76-85.
48. Rodger, A. and B. Nordén, Circular dichroism and linear dichroism. Vol. 1. 1997: Oxford University Press, USA.
49. Altschul, S.F., A protein alignment scoring system sensitive at all evolutionary distances. Journal of molecular evolution, 1993. 36(3): p. 290-300.
50. Papadopoulos, J.S. and R. Agarwala, COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics, 2007. 23(9): p. 1073-1079.
51. Cheng, K.-C., Structural and functional studies of dopamine N-acetyltransferase from Drosophila melanogaster, in Institute of Bioinformatics and Structural Biology. 2013, National Tsing Hua University. p. 106.