簡易檢索 / 詳目顯示

研究生: 吳俊宏
Wu, Chun-Hung
論文名稱: 修正型Nos□-Hoover熱容法及其於奈米結構熱力及熱機械性質之探討
A Modified Nose-Hoover Thermostat and Its Application to the Study of Thermodynamic and Thermal-mechanical Properties of Nanostructures
指導教授: 陳文華
Chen, Wen-Hwa
鄭仙志
Cheng, Hsien-Chie
口試委員: 陳文華
Chen, Wen-Hwa
鄭仙志
Cheng, Hsien-Chie
林見昌
Lin, Chien-Chang
方維倫
Fang, Wei-Leun
劉德騏
Liu, De-Shin
張怡玲
Chang, I-Ling
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 149
中文關鍵詞: 固/分子態奈米材料熱及熱機械性質溫度控制固態熱容法正則叢集分子動力學模擬
外文關鍵詞: Solid/molecule nanomaterials, thermodynamic and thermal-mechanical properties, temperature control, solid state thermostat, canonical ensemble, molecular dynamics simulation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來低尺度奈米結構如奈米粒子、奈米線、奈米柱、奈米管等,因具有獨特的尺寸量子效應、奈米尺寸、單晶結構及低結構缺陷等優點,而享有與眾不同物理材料特性,因此已漸被應用於微奈米電子及機電系統中。過去針對低尺度奈米結構之理論及實驗研究大抵偏向機械、光學、電性等行為的探討。然因高功能及高效能的需求造成系統電子元件功率的大幅增加,更由於高攜帶性及高電性效能的要求使得元件尺寸日益微縮,因此系統電子元件走向高功率密度的趨勢。高功率密度不可避免帶來高溫,高溫可能改變電子材料之物理性質,且降低電子元件的電性品質,因此奈米材料之熱力及熱機械性質/行為對其工業應用有重大影響,例如提高微米及奈米元件之熱傳導性將有效提升其品質及結構的可靠度,因此有必要深入加以探究。
    文獻上,針對奈米材料溫度特性之模擬常採用分子動力學(molecular dynamics, MD)或是量子力學 (quantum mechanics) 法搭配定原子數、定體積及定溫(NVT)熱容法,如速度縮放法(velocity-rescaling thermostat)、Berendsen 熱容法、標準型Nos□-Hoover (NH)熱容法、鏈狀NH熱容法(NH chain)及“大規模” 鏈狀NH熱容法(“massive” NHC)等等。這些熱容法源自於不考慮原子間交互作用力之單原子氣體模型。不同於稀薄的氣體,強鍵結系統(如分子、晶體及固體)原子間的交互作用力並不可忽略。因此,這些熱容法並不適用於強鍵結系統的定溫分子動力學模擬。忽略原子位能即聲子的振動效應對物理系統之溫度的影響,將導致物理系統的溫度被低估,進而造成外加系統反饋過度的能量進入物理系統中,此將導致高溫時系統能量高度振盪,而造成系統穩定度變差、求解精度下降及原子鍵結提早斷裂等問題。
    本論文旨在發展一套適用於強鍵結系統之新型正則叢集(canaical ensemble)或是NVT熱容法以利於定溫分子動力學計算。此熱容法衍生自傳統標準型NH熱容法,因此又稱為修正型NH熱容法。此法係基於Debye理論中所推導出的晶格振動能及零點能加入聲子(phonon)對系統的貢獻。數學證明顯示此修正型NH熱容法所求得之分隔函數(partition function)與正則叢集計算的相等,意謂以修正型NH熱容法所求得之物理量將等同於正則叢集之計算結果。此熱容法可作為研究固態/分子奈米結構(如金晶體及碳分子)從低溫(低於Debye溫度)至高溫(近相變化點)的熱力及熱機械性質的基礎。本文將以此修正型NH熱容法搭配分子動力學法或非平衡分子動力學法(nonequilibrium MD, NEMD)測試各式低尺度奈米結構(如奈米金粒子/奈米金線,奈米碳管及奈米碳球)之溫度相依熱力及熱機械性質(如振動行為、動態楊氏模數、熱傳導係數、線及體膨脹係數、熔點、比熱及常壓下高溫的相變化行為)。同時亦評估尺寸(長度及直徑)及旋度效應對低尺度奈米結構材料性質的影響,以及探討單層奈米碳管中尺寸效應對聲子(熱)傳輸現象之影響。為驗證修正型NH熱容法之有效性,研究結果除與現有的實驗及理論結果相互比較外,更將與搭配量子修正模式(quantum correction model)之傳統正則叢集分子動力學模擬以及修正型分子結構力學 (modified molecular structural mechanics)搭配Badger理論進行鍵長及鍵角溫度修正等模式之計算結果進行比對。
    本論文之成果不僅可深入了解低尺度奈米結構之低溫熱力及熱機械性質及高溫相變化行為,亦可了解溫度、尺寸及旋度之效應。不但深具學術性更有助於低尺度固/分子態奈米材料之設計、開發及應用。


    Because of the distinct size-dependent quantum effects together with nanosize, single crystal structure and minor defects, low-dimensional nanostructures, such as nanoparticles, nanowires, nanorods or nanotubes, yield remarkable physical material properties, and thus are potential for use in nano-scale electronic or electromechanical devices. Many previous theoretical and experimental studies of low-dimensional nanostructures were mainly placed on their various thermal-mechanical, optical and electronic properties. However, with the continually decreasing size of electronic and micromechanical devices and also the dense integration of both passive and active components for diversified functions and high performance, there is a general trend toward high power density, and thus high device temperature. High device temperature would potentially vary the physical properties of electronic materials and depreciate the electrical performance of electronic devices. It is now realized that the thermodynamic and thermal-mechanical properties of low dimensional nanomaterials and their temperature dependence are also important for applications. For example, enhancing the thermal conductance in micro- and nano-devices is essential to the improvement of their thermal performance, and even to their structural reliability.
    For constant temperature molecular dynamics (MD) or quantum dynamics (QM) simulation, several conventional NVT thermostats have been widely applied in literature, including velocity-rescaling thermostat, Berendsen thermostat, Nos□-Hoover (NH) thermostat, Nos□-Hoover chain (NHC) and “massive” NHC (MNHC). These thermostats are simply derived based on a monatomic gas model, where the intermolecular interactions are neglected. Unlike dilute gases, the interatomic interactions in a tightly bound system, such as molecules, crystals and solids, are not negligible; as a result, these thermostats are not adequate for use in constant temperature MD simulation of a tightly bound system. The neglect of the potential energy of atoms and so as the effect of phonons during the correlation of the physical system energy to temperature may underestimate the temperature of the physical system. Essentially, the underestimate would lead to feedback of an excessive energy into the physical system through feedback control of the external system. This would, unfortunately, further result in large fluctuation in system energy at high temperature, which potentially causes poor system stability, reduced solution accuracy and also early rupture of atomic bonds etc., an inaccurate estimate of the thermodynamic or thermal-mechanical properties of the tightly bound system, and even premature atomic bond breaking problems at high temperature.
    The study aims at developing a novel canonical ensemble (constant NVT) thermostat method for constant temperature MD simulation of a tightly bound system. The thermostat method is derived based on the standard NH thermostat, and is thus termed the modified NH thermostat. By the method, the thermodynamic and thermal-mechanical properties of solid/molecule nanostructures, such as Au crystals and carbon molecules, in a temperature range from low temperature (below Debye temperature) to high temperature (near phase change point) are extensively investigated. The proposed modified NH thermostat algorithm accounts for the phonon effects by virtue of the lattice vibrational and zero-point energy, derived based on the Debye theory, to accurately capture the quantum effects, particularly at temperature below Debye temperature. Proof of the equivalence of the method and the canonical ensemble is made. The modified NH thermostat incorporated with MD or nonequilibrium MD (NEMD) simulation is tested on several different low-dimensional solid/molecule nanostructures, such as Au nano-particles/nanowires, carbon nanotubes and carbon fullerenes, to characterize their temperature-dependent thermodynamic and thermal-mechanical properties, including vibrational behaviors, dynamic Young’s modulus, thermal conductivity, linear and volumetric coefficient of thermal expansion (CTE), melting point, constant volume specific heat, and also high-temperature phase transformation behaviors at atmospheric pressure. Furthermore, their size (length and diameter), lattice orientation, and chirality dependence are also assessed, and besides, the size dependence of the phonon transport phenomena in the SWCNTs from ballistic to super-diffusive is also examined. In addition to the published experimental and theoretical data, the predicted results are compared with those obtained from the MD simulation using several conventional NVT thermostats with or without quantum corrections and the modified molecular structural mechanics (MMSM) model incorporating Badger’s rule to determine the temperature-dependent bond length and angle.
    The achievements of this study provide a more profound understanding of not only the low temperature thermodynamic and thermal-mechanical properties of the low-dimensional solid/molecule nanomaterials and high temperature phase transformation behaviors but also their temperature, size, lattice orientation, and chirality dependences. The derived results show valuable academic contributions, and can be of much help for the design, development and applications of the low-dimensional nanomaterials.

    摘要 i Abstract iii Nomenclature vi Table of contents xi List of tables xiii List of figures xiv 1. Introduction 1 1.1 Motivation 1 1.2 Literature review 4 1.2.1 Canonical MD simulation 4 1.2.2 Thermodynamic and thermal-mechanical behaviors of nano-structure 8 1.3 Scopes and objectives 20 2. Molecular dynamics and thermostat algorithms 23 2.1 Molecular dynamics (MD) 23 2.1.1 Hamiltonian dynamics 23 2.1.2 Potential function 25 2.1.3 Verlet algorithm 31 2.2 Thermostat algorithms 32 2.2.1 The standard Nos□-Hoover (NH) thermostat method 33 2.2.2 Solid state physics 35 2.3 Quantum corrections 38 3. The modified NH thermostat method 39 4. Results and discussions 45 4.1 Thermodynamic properties and behaviors 45 4.1.1 Au nanowires and nanoparticles 45 4.1.2 Carbon fullerenes 51 4.2 Thermal-mechanical properties and behaviors 58 4.2.1 Vibrational behaviors 60 4.2.2 Dynamic Young’s modulus 63 4.3 Thermal conductivity and phonon transport phenomena 66 4.3.1 Quantum correction effects 66 4.3.2 Temperature effects 70 4.3.3 Size and chirality effects 74 5. Conclusions 77 6. Future recommendations 85 Reference 87

    1. Abraham, F. F.; Koch, S. W.; Desai, R. C. (1982): Computer-Simulation Dynamics of an Unstable Two-Dimensional Fluid: Time-Dependent Morphology and Scaling. Physical Review Letter. 49: 923-926.
    2. Adelman S. A.; Doll, J. D. (1976): Generalized Langevin equation approach for atom/solid□surface scattering: General formulation for classical scattering off harmonic solids. Journal of Chemical Physics. 64: 2375-2388.
    3. Aleksandrovskii, A. N.; Dolbin, A. V.; Esel’son, V. B.; Gavrilko, V. G.; Manzhelii, V. G.; Udovidchenko, B. G.; Bakai, A. S.; Gadd, G. E.; Moricca, S.; Sundqvist, B. (2003): Low-temperature thermal expansion of pure and inert-gas-doped fullerite C60. Low Temperature Physics. 29: 324-332.
    4. Andersen, H. C. (1980): Molecular dynamics simulations at constant pressure and/or temperature. Journal of Chemical Physics. 72, 2384.
    5. Arman, B.; An, Q.; Luo, S. N.; Desai, T. G.; Tonks, D. L.; Cahin, T.; Goddard III, W. A. (2011): Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading. Journal of Applied Physics. 109: 013503.
    6. Asinovskii, E. I.; Kirillin, A. V.; Kostanovskii, A. V. (2002): Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures. Physics-Uspekhi. 45: 869-882.
    7. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. (2008): Superior Thermal Conductivity of Single-Layer Graphene. Nano Letter. 8: 902-907.
    8. Bandow, S. (1997): Radial Thermal Expansion of Purified Multiwall Carbon Nanotubes Measured by X-ray Diffraction. Japanese Journal of Applied Physic. 36: 1403-1405.
    9. Baskes, M. I.; (1992): Modified embedded-atom potentials for cubic materials and impurities. Physical Review B, 46: 2727-2742.
    10. Battezzatti, L.; Pisani, C.; Ricca, F. (1975): Equilibrium conformation and surface motion of hydrocarbon molecules physisorbed on graphite. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 71: 1629-1639.
    11. Bauer, B. A.; Warren, G. L.; Patel, S. (2009): Incorporating Phase-Dependent Polarizability in Nonadditive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid−Vapor Interface. Journal of Chemical Theory and Computation. 5: 359-373.
    12. Beeler, J. (1966): Displacement Spikes in Cubic Metals. I. Alpha-Iron, Copper, and Tungsten. Physical Review, 150: 470-487.
    13. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Hermans, J. (1981): Intermolecular Forces (Reidel, Dordrecht).
    14. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Dinola, A.; Haak, J. R. (1984): Molecular dynamics with coupling to an external bath. Journal of Chemical Physics. 81: 3684.
    15. Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. (1987): The Missing Term in Effective Pair Potentials. Journal of Chemical Physics, 91: 6269-6271.
    16. Bond, S. D.; Leimkuhler, B. J.; Laird, B. B. (1999): The Nos□–Poincar□ Method for Constant Temperature Molecular Dynamics. Journal of Computational Physics. 151: 114-134.
    17. Braga, C.; Travis, K. P. (2005): A configurational temperature Nos□-Hoover thermostat. Journal of Chemical Physics. 123: 134101
    18. Branicio, P. S.; Rino, J. P. (2000): Large deformation and amorphization of Ni nanowires under uniaxial strain: A molecular dynamics study. Physics Review B 62: 16950-16955.
    19. Brenner D. W.; Garrison B. J. (1986): Dissociative valence force field potential for silicon. Physical Review B, 34: 1304-1307.
    20. Brenner, D. W. (1990): Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B, 42: 9458-9471.
    21. Brown, E.; Hao, L.; Gallop, J. C.; Macfarlane, J. C. (2005): Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes. Applied Physics Letters. 87: 023107.
    22. Brown, T. M.; Adams, J. B. (1995): EAM calculations of the thermodynamics of amorphous copper. Journal of Non-Crystalline Solids 180: 275-284.
    23. Buffat, P.; Borel, J-P. (1976): Size effect on the melting temperature of gold particles. Physcal Review A. 13: 2287-2298.
    24. Bundy, F. P. (1963): Melting of Graphite at Very High Pressure. Journal of Chemical Physics. 38: 618-630.
    25. Bundy, F. P. (1989): Pressure-temperature phase diagram of elemental carbon. Phys. A, 156: 169-178.
    26. Cao, G.; Chen X.; Kysar, J. W. (2006): Thermal vibration and apparent thermal contraction of single-walled carbon nanotubes. Journal of the Mechanics and Physics of Solids. 54: 1206-1236.
    27. Chakrabarty, A.; □aĝin, T. (2008): Computational Studies on Mechanical and Thermal Properties of Carbon Nanotube Based Nanostructures. Computers, Materials, & Continua. 7: 167-189.
    28. Chang, I. L.; Yeh, M. S. (2008): An atomistic study of nanosprings. Journal of Applied Physics 104: 024305.
    29. Chang, I. L.; Yeh, M. S. (2009): An atomistic study of elliptic cross-sectional nanosprings. Computer Modeling in Engineering and Science 41: 95-106.
    30. Chang, T. C.; Gao, H. J. (2003): Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. Journal of the Mechanics and Physics of Solids. 51: 1059-1074.
    31. Chang, T.; Geng, J.; Guo, X. (2005): Chirality- and size-dependent elastic properties of single-walled carbon nanotubes. Applied Physics Letters. 87: 251929.
    32. Che, J.; □agin, T.; Goddard, W. A., III; (2000): Thermal conductivity of carbon nanotubes. Nanotechnology, 11: 65–69.
    33. Chelikowsky, J. R. (1991): Nucleation of C60 clusters. Physical Review Letter. 67: 2970-2973.
    34. Chelikowsky, J. R. (1992): Formation of C60 clusters via Langevin molecular dynamics. Physical Review B, 45: 12062-12070.
    35. Chen, W. H.; Cheng, H. C.; Hsu, Y. C. (2007): Mechanical Properties of Carbon Nanotubes using Molecular Dynamics Simulations with the Inlayer van der Waals Interactions. Computer Modeling in Engineering and Sciences. 20: 123-145.
    36. Chen, W. H.; Cheng, H. C.; Liu, Y. L. (2010): Radial Mechanical Properties of Single-Walled Carbon Nanotubes Using Modified Molecular Structure Mechanics. Computational Materials Science. 47: 985-993.
    37. Chen, W.; Ahmed, H. (1993): Fabrication of 5-7 nm wide eyched lines in silicon using 100keV electron-beam lithography and polymethylmethacrylate resist. Applied Physics Letters 62: 1499-1501.
    38. Chen, Y.; Dorgan, Jr. B. L. (2006): On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires. Applied Physics Letters 100: 104301.
    39. Cheng, H. C.; Hsu Y. C.; Chen, W. H. (2009a): The influence of structural Defect on mechanical properties and fracture behaviors of carbon nanotubes. Computers, Materials, & Continua. 11: 127-146.
    40. Cheng, H. C.; Liu, Y. L.; Hsu, Y. C.; Chen, W. H. (2009b): Atomistic-Continuum Modeling for Mechanical Properties of Single-Walled Carbon Nanotubes. International Journal of Solids and Structures. 46: 1695-1704.
    41. Cheng, H. C.; Liu, Y. L.; Wu, C. H.; Chen, W. H. (2010): On Radial Breathing Vibration of Carbon Nanotubes. Computer Methods in Applied Mechanics and Engineering. 119: 45-48.
    42. Chiang, K. N.; Chou, C. Y.; Wu, C. J.; Yuan, C. A. (2006): Prediction of the bulk elastic constant of metals using atomic-level single-lattice analytical method. Applied physics letters 88: 171904.
    43. Chiang, K. N.; Chou, C. Y.; Wu, C. J.; Huang, C. J.; Yew, M. C. (2008): Analytical solution for estimation of temperature-dependent material properties of metals using modified Morse potential. Computer Modeling in Engineering and Science 37: 85-96.
    44. Chiu, H.-Y.; Deshpande, V. V.; Postma, H. W. Ch.; Lau, C. N.; Mik□, C.; Forr□, L.; Bockrath, M. (2005): Ballistic phonon thermal transport in multiwalled carbon nanotubes. Physical Review Letters. 95: 226101.
    45. Choi, T.-Y.; Poulikakos, D.; Tharian, J.; Sennhauser, U. (2006): Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method. Nano Letters. 6: 1589–1593.
    46. Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. (2001): Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293: 1289-1292.
    47. Dolowschi□k, M.; Kovacs, Z. (2005): Fluctuation formula in the Nos□-Hoover thermostated Lorentz gas. Physical Review E. 71: 025202.
    48. Erkoc, S. (1997): Empirical many-body potential energy function used in computer simulations of condensed matter properties. Physics Reports, 278: 79-105
    49. Espinosa, H. D.; Prorok, B. C.; Fischer, M. (2003): A methodology for determining mechanical properties of freestanding thin films and MEMS. Journal of the Mechanics and Physics of Solids 51: 47-67.
    50. Evans, D. J., (1982): Homogeneous NEMD algorithm for thermal conductivity—application of non-canonical linear response theory. Physics Letters A. 91: 457–460.
    51. Evans, D. J.; Holian, B. L. (1985): The Nose–Hoover thermostat. Journal of Chemical Physics. 83: 4069.
    52. Fang, T. H.; Chang, W. J. (2004): Phase transformation of fullerenes using molecular dynamics simulation. Microelectronics Journal. 35: 581-583.
    53. Fon, W.; Schwab, K. C.; Worlock, J. M.; Roukes, M. L. (2002): Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K. Physical Review B, 66: 045302.
    54. Frascoli, F.; Todd, B. D. (2007): Molecular dynamics simulation of planar elongational flow at constant pressure and constant temperature. Journal of Chemical Physics. 126: 044506.
    55. Frenkel, D.; Smit, B.; (2002): Understanding molecular simulation: from algorithms to applications, 2nd ed., (Academic, San Diego, Chap. 3.)
    56. Fujii, M.; Zhang, X.; Xie, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. (2005): Measuring the thermal conductivity of a single carbon nanotube. Physical Review Letters. 95, 065502.
    57. Gale, J. D.; Rohl, A. L. (2003): The General Utility Lattice Program. Molecular Simulation, 29: 291.
    58. Geballe, T. H.; Giauque, W. F. (1952): The Heat Capacity and Entropy of Gold from 15 to 300°K. Journal of the American Chemical Society. 74: 2368-2369.
    59. Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. (2008): Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters. 92: 151911.
    60. Gilbert, T. (2006): Fluctuation theorem applied to the Nos□–Hoover thermostated Lorentz gas. Physical Review E. 73: 035102.
    61. Girifalco, L. A.; Weizer, V. G. (1959): Application of the Morse potential function to cubic metals. Physical Review 114: 687-690.
    62. Gu, Z.; Wang, K.; Wei, J.; Li, C.; Jia, Y.; Wang, Z.; Luo, J.; Wu, D. (2006): Tensile properties of ultrathin double-walled carbon nanotube membranes. Carbon. 44, 3315-3319.
    63. Gugenberger, F.; Heid, R.; Meingast, C.; Adelmann, P.; Braun, M.; Wuhl, H. (1992): Glass transition in single-crystal C60 studied by high-resolution dilatometry. Physical review letters, 69: 3774-3777.
    64. Gupta, S.; Farmer, J. (2011): Multiwalled carbon nanotubes and dispersed nanodiamond novel hybrids: Microscopic structure evolution, physical properties, and radiation resilience. Journal of Applied Physics. 109: 014314.
    65. Haile, J. M. (1997): Molecular Dynamics Simulation. (John Wiley & Sons, New York.)
    66. Hamanaka, T.; Yamamoto, R.; Onuki, A. (2005): Molecular dynamics simulation of heat conduction in near-critical fluids. Physical Review E. 71: 011507.
    67. Han, X. J.; Wang, J. Z.; Chen, M.; Guo, Z. Y. (2004): Molecular dynamics simulation of thermophysical properties of undercooled liquid cobalt. Journal of Physics: Condensed Matter 16: 2565-2574.
    68. Hanszen, K-J.; Phys. Z. (1960): Theoretische Untersuchungen □ber den Schmelzpunkt kleiner K□gelchen Ein Beitrag zur Thermodynamik der Grenzfl□chen. Physics and Astronomy. 157: 523-553.
    69. Heggie, M. I. (1991): Semiclassical interatomic potential for carbon and its application to the self-interstitial in graphite. Journal of Physics: Condensed Matter 3: 3065-3079.
    70. Hernandez, E.; Goze, C.; Bernier, P.; Rubio, A. (1998): Elastic Properties of C and BxCyNz Composite Nanotubes. Physical Review Letters. 80, 4502-4505.
    71. Hone, J.; Whitney, M.; Piskotti, C.; Zettl, A. (1999): Thermal conductivity of single-walled carbon nanotubes. Physical Review. B, vol. 59, pp. R2514–R2516.
    72. Hone, J.; Llaguno, M. C.; Nemes, N. M.; Johnson, A. T., (2000): Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Applied Physics Letters, 77: 666-668.
    73. Hoover, W. G. (1985): Canonical dynamics: Equilibrium phase-space distributions. Physical Review A. 31: 1695-1697.
    74. Hoover, W. G.; Ashurst, W. T. (1975): Nonequilibrium molecular dynamics. in Theoretical Chemistry: Advances and Perspectives, (H. Eyring and D. Henderson, eds., Academic, New York, vol. 1, pp. 1–51).
    75. Hu Y.; Sinnott, S. B. (2004): Constant temperature molecular dynamics simulations of energetic particle–solid collisions: comparison of temperature control methods. Journal Computational Physics. 200: 251-266.
    76. Hu, J.; Ruan, X.; Chen Y. P. (2009): Thermal conductivity and the rectification in graphene nanoribbos: a molecular dynamics study. Nano Letters. 9: 2730-2735.
    77. Hu, S. Y.; Ludwig, M.; Kizler, P.; Schmauder, S. (1998): Atomistic simulations of deformation and fracture of α-Fe. Modelling and Simulation in Materials Sciences and Engineering 6: 567-586.
    78. Jiang, H.; Liu, B.; Huang, Y.; Hwang, K. C. (2004): Thermal Expansion of Single Wall Carbon Nanotubes. Journal of Engineering Materials and Technology. 126: 265-270.
    79. Kang, J. W.; Hwang, H. J. (2001): Mechanical deformation study of copper nanowire using atomistic simulation. Nanotechnology 12: 295-300.
    80. Kelly, B. T. (1981): Physics of Graphite (Applied Science Publishers,London).
    81. Khitun, A.; Balandin, A; Wang, K. L. (1999): Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinementof acoustic phonons. Superlattices and Microstruct, 26: 181-193.
    82. Khor, K. E.; Das Sarma, S. (1988): Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors. Physical Review B. 38: 3318-3322.
    83. Kim, E. H.; Lee, B. J. (2009): Size dependency of melting point of crystalline nano particles and nano wires: A thermodynamic modeling. Metals and Materials International. 15: 531-537.
    84. Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. (2001): Thermal Transport Measurements of Individual Multiwalled Nanotubes. Physical Review Letters. 87: 215502.
    85. Kim, S. G.; Tom□nek, D. (1994): Melting the fullerenes: A molecular dynamics study. Physical Review Letters. 72: 2418-2421.
    86. Kittel, C. (1996): Introduction to Solid State Physics 7th edition (John Wiley & Sons, New York.)
    87. Krishnan, A.; Dujardin, E.; Ebbesen, T. W.; Yianilos, P. N.; Treacy, M. M. J. (1998): Young’s modulus of single-walled nanotubes. Physical Review B. 58: 14013-14019.
    88. Kwon, Y. K.; Berber, S.; Tomanek, D. (2004): Thermal Contraction of Carbon Fullerenes and Nanotubes. Physical Review Letters. 92: 015901.
    89. L□szl□, I. (1998): Formation of cage-like C60 clusters in molecular-dynamics simulations. Europhysics Letters. 44: 741-746.
    90. Lee, Y. H.; Biswas, R.; Soukoulis, C. M.; Wang, C. Z.; Chan, C. T.; Ho, K. M. (1991): Molecular-dynamics simulation of thermal conductivity in amorphous silicon. Physical Review B, 43: 6573–6580.
    91. Lennard-Jones, J. E. (1924): The determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. (Proceedings of Royal Society, London)
    92. LeSar, R.; Najafabadi, R.; Srolovitz, D.J. (1989): Finite-temperature defect properties from freeenergy minimization. Physical Review Letters, 63: 624-627.
    93. Li, C. Y.; Chou, T. W. (2003): Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Physical Review B. 68: 073405.
    94. Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. (2003): Thermal conductivity of individual silicon nanowires. Applied Physics Letters, 83: 2934.
    95. Lier, G. V.; Alsenoy, C. V.; Doran, V. V.; Geerlings, P. (2000): Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chemical Physics Letters. 326: 181-185.
    96. Liew, C. C.; Inomata, H.; Saito, S. (1995): Molecular dynamics study on solvent clustering in supercritical fluid solutions based on particle radial kinetic energy. Fluid Phase Equilibria. 104: 317-329.
    97. Lincoln, R. C.; Koliwad, K. M.; Ghate, P. B. (1967): Morse-potential evaluation of second- and third-order elastic constants of some cubic metals. The Physical Review 157: 463-466.
    98. Liu Y.; Tuckerman, M. E. (2000): Generalized Gaussian moment thermostatting: A new continuous dynamical approach to the canonical ensemble. Journal of Chemical Physics. 112: 1685-1700.
    99. Liu, D. S.; Tsai, C. Y.; Lyu, S. R. (2009): Determination of temperature-dependent elasto-plastic properties of thin-film by MD nanoindentation simulations and an inverse GA/FEM computational scheme. Computers, Materials, and Continua 11: 147-164.
    100. Liu, W. C.; Kuang, Y. D.; Meng, F. Y.; Shi, S. Q. (2011): Temperature effects on mechanical properties of the (3, 3) carbon nanotube X-junctions. Computation Material Science. 49: 916-919.
    101. Lomba, E.; Molina, D.; Alvarez, M. (2000): Hubbard corrections in a tight-binding Hamiltonian for Se: Effects on the band structure, local order, and dynamics. Physical Review B. 61: 9314-9321.
    102. Lourie O.; Wagner, H. D. (1998): Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension. Applied Physics Letters. 73: 3527.
    103. Lu, J. P. (1997): Elastic Properties of Carbon Nanotubes and Nanoropes. Physical Review Letter. 79: 1297-1300.
    104. Lukers J. R.; Zhong, H. (2007): Thermal conductivity of individual single-wall Carbon nanotubes. Journal of Heat Transfer. 129: 705-716.
    105. Maiti, A.; Mahan, G. D.; Pantelides, S. T. (1997): Dynamical simulations of nonequilibrium processes-heat flow and the Kapitza resistance across grain boundaries. Solid State Communications, 102: 51.
    106. Malvezzi, A. M.; Bloenbergen, N.; Huang, C. Y. (1986): Time-resolved picosecond optical measurements of laser-excited graphite. Physical Review Letters. 57: 146-149.
    107. Maniwa, Y.; Fujiwara, R.; Kira, H.; Tou, H.; Karaura, H.; Suzuli, S.; Achiba, Y. (2001a): Thermal expansion of single-walled carbon nanotube (SWNT) bundles: X-ray diffraction studies. Physical Review B. 64: 241402
    108. Maniwa, Y.; Fujiwara, R.; Kira, H.; Tou, H.; Nishibori, E.; Takata, M.; Sakata, M. (2001b): Multiwalled carbon nanotubes grown in hydrogen atmosphere: An x-ray diffraction study. Physical Review B. 64: 073105.
    109. Marion, J. B.; Thornton, S. T. (2004): Classical dynamics of particles and systems 5th edition (Belmont, CA)
    110. Martin, C. R.; Menon V. P. (1995): Fabrication and evaluation of nanoelectrode ensembles. Analytical Chemistry 67: 1920-1928.
    111. Martyna, G. J.; Tuckerman, M. E.; Klein, M. L. (1992): Nos□–Hoover chains: The canonical ensemble via continuous dynamics. Journal of Chemical Physics. 97: 2635-2643.
    112. Maruyama, S. (2000): Molecular dynamics method for microscale heat transfer. Advances in Numerical Heat Transfer 2: 189-226.
    113. Maruyama, S. (2002a): Molecular dynamics methods in micorscale hear transfer. Heat Transfer & Fluid low in microchannels. 2.13.7: 1-32.
    114. Maruyama, S (2002b): A molecular dynamics simulation of heat conduction in finite length SWNTs. Physica B, 323:193-195.
    115. Maruyama, S. (2003): A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube. Microscale Thermophysical Engineering, 7: 41–50.
    116. Mcquarie, D. A. (1976): Statistical Mechanics (Harper & Row Publishers New York).
    117. Mehrez, H.; Ciraci, S. (1997): Yielding and fracture mechanisms of nanowires. Physics Review B 56: 12632-12642.
    118. Morisada, S.; Shinto, H.; Higashitani, K. (2007): Revised Implicit Solvent Model for the Simulation of Surfactants in Aqueous Solutions. 2. Modeling of Charged Headgroups at Oil−Water Interface. Journal of Chemical Theory and Computation. 3, 1163-1171.
    119. Murmu, T.; Adhikari, S. (2010): Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation. Journal of Applied Physics. 108: 123507.
    120. Natsuki, T.; Nia, Q. Q.; Endob, M. (2008): Analysis of the vibration characteristics of double-walled carbon nanotubes. Carbon. 46: 1570-1573.
    121. Nos□, S. (1984): A molecular dynamics method for simulations in the canonical ensemble. Molecular Physsics. 52: 255-268.
    122. Osman M. A.; Srivastava, D. (2001): Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology, 12: 21-24.
    123. Pietrucci, F.; Laio, A. (2009): A Collective Variable for the Efficient Exploration of Protein Beta-Sheet Structures: Application to SH3 and GB1. Journal of Chemical Theory and Computation. 5: 2197-2201.
    124. Poncharal, P.; Wang, Z. L.; Ugarte, D.; de Heer, W. A. (1999): Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes. Science. 283: 1513-1516.
    125. Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. (2006): Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Letters, 6: 96–100.
    126. Prasher, R. (2008): Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes. Physical Review B, 77: 075424.
    127. Prober, D. E.; Feuer, M. D.; Giordano, N. (1980): Fabrication of 300-□ metal lines with substrate-step techniques. Applied Physics Letters 37: 94-96.
    128. Rao, S. S. (2004): Mechanical Vibrations. 4th ed. (Addison Wesley. USA).
    129. Rapaport D. C. (2004): The art of molecular dynamics simulation. 2nd ed., (Cambridge university press, United Kingdom, Chap. 5).
    130. Raravikar, N. R.; Keblinski, P.; Rao, A. M.; Dresselhaus, M. S.; Schadler, L. S. (2002): Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Physical Review B. 66: 235424.
    131. Rowlinson, J. S.; Widom, B. (1982): Molecular Theory of Capillarity (Clarendon Press, Oxford).
    132. Rubio-Bollinger, G.; Bahn, S. R.; Agrait, N.; Jacobsen, K. W.; Vieira, S. (2001): Mechanical properties and formation mechanisms of a wire of single gold atoms. Physical Review Letters 87: 026101.
    133. Sakai, S.; Tanimoto, H.; Mizubayashi, H. (1999): Mechanical Behavior of High-Density Nanocrystalline Gold Prepared by Gas Deposition Method. Acta Materialia. 47: 211-217.
    134. Sakai, S.; Tanimoto, H.; Mizubayashi, H. (1999): Mechanical behavior of high-density nanocrystalline gold prepared by gas deposition method. Acta Materialia 47: 211-217.
    135. Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. (1992): Electronic structure of chiral graphene tubules. Applied Physics Letters 60: 2204-2206.
    136. Sankaranarayanan, S. K. R. S.; Bhethanabotla, V. R.; Joseph, B. (2006): Molecular dynamics simulation study of the melting and structural evolution of bimetallic Pd-Pt nanowires. Physcal Review B. 74: 155441
    137. Savvatimskii, A. I. (2003): Melting point of graphite and liquid carbon (Concerning the paper 'Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures' by EI Asinovskii, A V Kirillin, and A V Kostanovskii). Physics-Uspekhi. 46: 1295-1303.
    138. Savvatimskiy, A. I. (2005): Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon, 43: 1115-1142.
    139. Schelling, P. K.; Keblinski, P. (2003): Thermal expansion of carbon structures. Physical Review B 68: 035425.
    140. Senchenko, V. N. (1987) Institute for High Temperatures RAS. Moscow, PhD Thesis.
    141. Shen, S.; Atluri S. N. (2004): Atomic-level stress calculation and continuum-molecular system equivalence. Computer Modeling in Engineering and Sciences 6: 91-104.
    142. Shim, J.-H.; Lee, B.-J.; Cho, Y. W. (2002): Thermal stability of unsupported gold nanoparticle: a molecular dynamics study. Surface Science. 512: 262-268.
    143. Shiomi, J.; Maruyama, S. (2007): Diameter and Length Effect on Diffusive-Ballistic Phonon Transport in a Carbon Nanotube. Proceedings of 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference, July 8-12 Vancouver, British Columbia, CANADA.
    144. Shiomi, J.; Maruyama, S. (2008): Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes. Japanese Journal of Applied Physics, 47: 2005-2009.
    145. Souriau, J. S.; Brun, J.; Franiatte, R.; Gasse, A. (2004): Development on Wafer-level Anisotropic Conductive Film for Flip-chip Interconnection. Proc 54th Electronic Components and Technology Conference: 155-158.
    146. Steinbeck, J.; Braunstein, G.; Dresselhaus, M. S.; Venkatesan, T.; Jacobson, D. C. (1985): A model for pulsed laser melting of graphite. Journal Applied Physics. 58: 4374-4382.
    147. Takada, A.; Richet, P.; Catlow, C. R. A.; Price, G. D. (2004): Molecular dynamics simulations of vitreous silica structures. Journal of Non-Crystalline Solids. 345-346: 224-229.
    148. Tanaka, H.; Nakanishi, K.; Watanabe, N. (1983): Molecular dynamics simulations at constant pressure and/or temperature. Journal of Chemical Physics. 78: 2626.
    149. Tersoff, J. (1988): New empirical approach for the structure and energy of covalent systems. Physical Review B 37: 6991-7000.
    150. Tobias, D. J.; Martyna, G. J.; Klein, M. L. (1993): Molecular dynamics simulations of a protein in the canonical ensemble. Journal of Physical Chemistry 97: 12959-12966.
    151. Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. (1996): Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature. 381: 678-680.
    152. Tuckerman, M. E.; Berne, B. J.; Martyna, G. J.; Klein, M. K. (1993): Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals. Journal of Chemical Physics. 99: 2796.
    153. Tuckerman, M. E.; Parrinello, M. (1994): Integrating the Car–Parrinello equations. I. Basic integration techniques. Journal of Chemical Physics, 101: 1302-1315.
    154. Tuckerman, M. E.; Mundy, C. J.; Martyna, G. J. (1999): On the classical statistical mechanics of non-Hamiltonian systems. Europhysics Letters. 45: 149-155.
    155. Tuckerman, M. E.; Liu, Y.; Ciccotti, G.; Martyna, G. J. (2001): Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems. Journal of Chemical Physics, 115: 1678-1702.
    156. Venkatesan, T.; Jacobson, D. C.; Gibson, J. M. (1984): Measurement of Thermodynamic Parameters of Graphite by Pulsed-Laser Melting and Ion Channeling. Physical Review Letters. 53: 360-363.
    157. Verlet, L. (1967): Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules. Physical Review. 159: 98-103.
    158. V□lklein, F.; Reith, H.; Schmitt, M. C.; Huth, M.; Rauber, M.; Neumann, R. (2010): Microchips for the investigation of thermal and electrical properties of individual nanowires. Journal of electronic materials. 39: 1950-1956.
    159. Wang, B.; Wang, G.; Chen, X.; Zhao, J. (2003): Melting behavior of ultrathin titanium nanowires. Physical Review B. 67 193403.
    160. Wang, Z. L.; Gao, R. P.; Poncharal, P.; de Heer, W. A.; Dai, Z. R.; Pan, Z. W. (2001): Mechanical and electrostatic properties of carbon nanotubes and nanowires. Materials Science Engineering C. 16: 3-10.
    161. Wei, S.; Li, C.; Chou, M.Y. (1994): Ab initio calculation of thermodynamic properties of silicon. Physical Review B, 50: 14587.
    162. Whitby, R. L. D.; Mikhalovsky, S. V.; Gun’ko, V. M. (2010): Mechanical performance of highly compressible multi-walled carbon nanotube columns with hyperboloid geometries. Carbon. 48, 145-152.
    163. Wiley, A. P.; Williams, S. L.; Essex, J. W. (2009): Conformational Motions of HIV-1 Protease Identified Using Reversible Digitally Filtered Molecular Dynamics. Journal of Chemical Theory and Computation. 5: 1117-1128.
    164. Wong, E. W.; Sheehan, P. E.; Lieber, C. M. (1997): Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nano¬tubes. Science 277: 1971-1975.
    165. Woodcock, L. V. (1971): Isothermal molecular dynamics calculations for liquid salts. Chemical Physics Letters. 10: 257-261.
    166. Wu, H. A. (2004): Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod. Computational Materials Science 31: 287-291.
    167. Wu, H. A. (2006a): Molecular dynamics study of the mechanics of metal nanowires at finite temperature. European Journal of Mechanics – A/Solids. 25: 370-377.
    168. Wu, H. A. (2006b): Molecular dynamics study on mechanics of metal nanowire. Mechanics Research Communications. 33: 9-16.
    169. Xu, X. J.; Fei, G. T.; Yu, W. H.; Chen, L.; Zhang, L. D. (2006): In situ x-ray diffraction study of the thermal expansion of the ordered arrays of silver nanowires embedded in anodic alumina membranes. Applied Physics Letters. 88, 211902
    170. Yamaguchi, Y.; Maruyama, S. (1998): A molecular dynamics simulation of the fullerene formation process. Chemical Physics Letters. 286: 336-342.
    171. Yang, N.; Zhang, G.; Li, B. (2010): Violation of Fourier’s Law and Anomalous Heat Diffusion in Silicon Nanowires. Nano Today, 5: 85-91.
    172. Yi, W.; Lu, L.; Zhang, D.L.; Pan, Z.W.; Xie, S.S. (1999): Linear specific heat of carbon nanotubes. Physical Review B, 59: R9015–R9018.
    173. Yosida, Y. (2000): High-temperature shrinkage of single-walled carbon nanotube bundles up to 1600 K. Journal of Applied Physics. 87: 3338-3341
    174. Yu, C. H.; Shi, L.; Yao, Z.; Li, D. Y.; Majumdar, A. (2005): Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Letters, 5: 1842–1846.
    175. Yu, M. F.; Lourie, O.; Dyer, M.; Moloni, K.; Kelly, T.; Ruoff, R. S. (2000): Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science. 287: 637-640.
    176. Zare K.; Szebehely, V. (1975): Time transformations in the extended phase-space. Celestial Mechanics. 11: 469-482.
    177. Zazula, J. M. (1997) CERN LHC Project Note 78.
    178. Zhang, C. L.; Shen, H. S. (2007): Thermal buckling of initially compressed single-walled carbon nanotubes by molecular dynamics simulation. Carbon. 45: 2614-2620.
    179. Zhang, G.; Li, B. (2005): Anomalous vibrational energy diffusion in carbon nanotubes. Journal of Chemical Physics, 123: 014705.
    180. Zhang, Y. C.; Chen, X.; Wang, X. (2008): Effects of temperature on mechanical properties of multi-walled carbon nanotubes. Composites Science and Technology. 68: 572-581.
    181. Zhao, H.; Tang, Z.; Li, G.; Aluru, N. R. (2006): Quasiharmonic models for the calculation of thermodynamic properties of crystalline silicon under strain. Journal of Applied Physics, 99: 064314.
    182. Zhou, G.; Duan, W.; Gu, B. (2001): Electronic structure and field-emission characteristics of open-ended single-walled carbon nanotubes. Physical Review letters. 87: 095504.
    183. Zhu, Y.; Dou, X.; Huang, X.; Li, L.; Guanghai, L. (2006): Properties of Bi nanowire arrays with different orientations and diameters. Journal of Physical Chemiistry B. 110: 26189-26193.
    184. Zhukov, A. V.; S. Yang, and J. Cao (2005): Low-Temperature Thermal Transport in Nanowires, JETP Letters, vol. 81, No. 4, 2005, pp. 190–194.
    185. Zimmermann, J.; Pavone, P.; Cuniberti, G. (2008): Vibrational modes and low-temature thermal properties of graphene and carbon nanotubes: Minimal force-constant model. Physical Review B. 78: 045410.
    186. Zou J.; Balandin, A. (2001): Phonon heat conduction in a semiconductor. Journal of Applied Physics, vol. 89, pp. 2932-2938.
    187. Zubov, V. I.; Sanchez, J. F.; Tretjakov, N. P.; Caparica, A. A.; Zubov, I. V. (1997): Isotherms, thermodynamic properties and stability of the FCC phase of the C60 fullerite: A theoretical study. Carbon, vol. 35, pp. 729-734.
    188. Materials Studio TM package [Online]. Available: http://accelrys.com/products/materials-studio/ index.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE