研究生: |
謝函叡 Hsieh, Han-Jui |
---|---|
論文名稱: |
反應式射頻磁控濺鍍法製備模造玻璃抗沾黏高熵合金薄膜之研究 Study on Anti-stick Glass-molding High-entropy Alloy Films Deposited by RF Reactive Magnetron Sputtering |
指導教授: |
葉均蔚
Yeh, Jien-Wei |
口試委員: |
李勝隆
Lee, Sheng-Long 洪健龍 Hong, Jian-Long 蔡銘洪 TSAI, MING-HUNG |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 186 |
中文關鍵詞: | 薄膜 、抗沾黏 、模造玻璃 、射頻磁控濺鍍 、玻璃 |
外文關鍵詞: | film, anti sticking, glass molding, RF reactive magnetron sputtering, glass |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以反應式射頻磁控濺鍍法製備多元高熵碳化物及氮化物薄膜,探討薄膜成分含有不同碳原子及氮原子總量對薄膜微結構、附著性、抗玻璃沾黏性的影響。實驗結果顯示碳原子總量不同下,碳化物薄膜在 800 °C 熱循環前後均呈現 FCC 固溶結構,氮化物薄膜則根據氮含量多寡分別呈現混晶 (非晶∕FCC) 與 FCC 固溶結構,在 750 °C 熱循環後也仍保持相同結構,都具有優良的高溫熱穩定性。在碳化物及氮化物薄膜與鎢鋼基板附著性方面,碳化膜在熱循環前後都呈現最好的 HF1 等級,氮化膜則介於 HF2 至 HF3 之間的等級。針對碳化物薄膜在熱循環後與鎢鋼基板之間剝落的現象,本研究獲得解決方法,在工業上極具發展潛力。
Multi-element carbide and nitride coatings based on high-entropy alloys have received lots of attention. In this study, multi-element carbide and nitride films were designed and deposited at 350 °C and 150 V substrate bias on Si wafers and WC-Co substrates by RF reactive magnetron sputtering in the gaseous mixture Ar + CH4 and Ar + N2, separately. By changing carbon and nitrogen content of the coating, crystal structure, microstructure, adhesion and anti-sticking behavior between coating and glass have been investigated. The results of crystal structure indicate that all carbide coatings exhibit FCC structure before and after the 800 °C thermal cycling test. The structures of nitride coatings maintain amorphous + FCC mixed structure based on different nitrogen content before and after the 750 °C thermal cycling test. Thus, all the coatings have good thermal stability. The carbide coatings exhibit the best HF1 grade, and the nitride coatings exhibit the grade between HF2 and HF3. We also overcome the lift-off of the coatings from WC substrate during thermal cycling and thus show its potential in the glass molding industry.
1. Torii, H., et al., Mold for direct press molding of optical glass element. 1986, Google Patents.
2. Ishiguro, Y., et al., Method of making optical glass article. 1993, Google Patents.
3. Brand, J., R. Gadow, and A. Killinger, Application of diamond-like carbon coatings on steel tools in the production of precision glass components. Surface and Coatings Technology, 2004. 180: p. 213-217.
4. Klocke, F., et al., Model of coating wear degradation in precision glass molding. The International Journal of Advanced Manufacturing Technology, 2016. 87(1-4): p. 43-49.
5. Kung Jeng, M., et al., Design of Protective Coatings for Glass Lens Molding. Vol. 364. 2008. 655-661.
6. Yeh, J.-W., Recent progress in high-entropy alloys. Annales de Chimie-Science des Matériaux, 2006. 31(6): p. 633-648.
7. Tsai, M.-H. and J.-W. Yeh, High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014. 2: p. 107-123.
8. Yeh, J.-W., et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
9. Michaud, L., et al., New perspectives in monovision: A study comparing aspheric with disposable lenses. International Contact Lens Clinic, 1995. 22(9): p. 203-208.
10. Klocke, F., et al. Coating systems for precision glass molding tools. in proceedings of the 7th international conference: The coating in manufacturing engineering. 2008.
11. Aitken, B.G., Phosphate glasses for glass molds. 1991, Google Patents.
12. Furukawa, S., et al., Glass for molded lens. 2004, Google Patents.
13. Budinski, M.K., et al., Glass mold material for precision glass molding. 2002, Google Patents.
14. Roberts, M., Advances in moulds and materials. Glass technology, 1999. 40(5): p. 136-137.
15. Klocke, F., et al., Adhesive interlayers' effect on the entire structure strength of glass molding tools' Pt–Ir coatings by nano-tests determined. Surface and Coatings Technology, 2011. 206(7): p. 1867-1872.
16. Junjun, W., et al., Antistick Re-Ir Protective Coating Deposited on WC Mould Substrate. Rare Metal Materials and Engineering, 2016. 45(1): p. 227-231.
17. Mandina, M., Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry. Handbook of Optics, M. Bass, Editor, 2009.
18. Chao, C.-L., et al., Study on the design of precious metal based protective films for glass moulding process. Surface and Coatings Technology, 2013. 231: p. 567-572.
19. Su, C.H., et al., Mechanical and optical properties of diamond-like carbon thin films deposited by low temperature process. Thin Solid Films, 2006. 498(1): p. 220-223.
20. Klocke, F., O. Dambon, and K. Georgiadis. Comparison of nitride and noble metal coatings for precision glass molding tools. in Key Engineering Materials. 2010. Trans Tech Publ.
21. Grove, W.R., On the Electro-Chemical Polarity of Gases. Philosophical Transactions of the Royal Society of London, 1852. 142: p. 87-101.
22. Depla, D., S. Mahieu, and J.E. Greene, Chapter 5 - Sputter Deposition Processes, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P.M. Martin, Editor. 2010, William Andrew Publishing: Boston. p. 253-296.
23. Mattox, D.M., Chapter 7 - Physical Sputtering and Sputter Deposition (Sputtering), in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D.M. Mattox, Editor. 2010, William Andrew Publishing: Boston. p. 237-286.
24. Walton, S.G. and J.E. Greene, Chapter 2 - Plasmas in Deposition Processes, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P.M. Martin, Editor. 2010, William Andrew Publishing: Boston. p. 32-92.
25. http://marriott.tistory.com/97.
26. Greene, J.E., Chapter 12 - Thin Film Nucleation, Growth, and Microstructural Evolution: An Atomic Scale View, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P.M. Martin, Editor. 2010, William Andrew Publishing: Boston. p. 554-620.
27. Mattox, D.M., Chapter 10 - Atomistic Film Growth and Some Growth-Related Film Properties, in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D.M. Mattox, Editor. 2010, William Andrew Publishing: Boston. p. 333-398.
28. Movchan, B.A. and A.V. Demchishin, Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Oxide. The Physics of Metals and Metallography, 1969. 28: p. 83-90.
29. Thornton, J.A., High Rate Thick Film Growth. Annyal Review of Materials Science, 1977. 7: p. 239-260.
30. Messier, R., A.P. Giri, and R. A.Roy, Revised Structure Zone Model for Thin Film Physical Structure. Journal of Vacuum Science & Technology A, 1984. 2(2): p. 500-503.
31. Huang, P.-K., et al., Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials, 2004. 6(1-2): p. 74-78.
32. Yeh, J.-W., Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM, 2013. 65(12): p. 1759-1771.
33. Murty, B.S., J.W. Yeh, and S.Ranganathan, High-Entropy Alloys. 2014, London: Elsevier. 218.
34. Tsai, K.Y., M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013. 61(13): p. 4887-4897.
35. 辜文柏, (AlCrTaTiZr)(CN) 薄膜結構及性質之研究, in 清華大學材料科學工程學系學位論文. 2008. p. 1-97.
36. 劉庭瑋, 多元碳化物薄膜及多元碳氮化物薄膜之結構與性質研究, in 清華大學材料科學工程學系學位論文. 2009. p. 1-133.
37. 林季薇, 多元碳化物 (CrNbSiTiZr) Cx 鍍膜之結構與性質研究, in 清華大學材料科學工程學系學位論文. 2010. p. 1-127.
38. 黃志維, 不同甲烷流率對反應式濺鍍 (CrNbSiTiZr) Cx 鍍膜結構與性質之影響. 2011, 國立清華大學.
39. 陳思寰, (CrNbTaTiZr) Cx 薄膜的機械性質與微結構之研究, in 清華大學材料科學工程學系學位論文. 2012. p. 1-135.
40. 許凱閔, et al., (CrNbSiTaZr)CxNy多元碳氮化物薄膜之結構與性質研究. 2015, 新竹市: 國立清華大學. 123面.
41. 陳思寰, (CrNbTaTiZr) Cx 薄膜的機械性質與微結構之研究. 清華大學材料科學工程學系學位論文, 2012.
42. 蔡佳凌, 反應式直流磁控濺鍍法製備 (Al, Cr, Nb, Si, B, C) 100-xNx 高熵薄膜之研究. 清華大學材料科學工程學系學位論文, 2014.
43. Gemelli, E., A. Scariot, and N.H.A. Camargo, Thermal Characterization of Commercially Pure Titanium for Dental Applications. Materials Research, 2007. 10: p. 241-346.
44. Vaz, F., et al., Physical, structural and mechanical characterization of Ti 1− x Si x N y films. Surface and Coatings Technology, 1998. 108: p. 236-240.
45. Hunt, J., et al., Microwave-specific enhancement of the carbon–carbon dioxide (Boudouard) reaction. The Journal of Physical Chemistry C, 2013. 117(51): p. 26871-26880.