研究生: |
陳宥蓁 Chen, Yu-Chen |
---|---|
論文名稱: |
整合液體介電泳與光固化水膠之腫瘤免疫暨藥物微系統晶片研發 Tumor-lab-on-chip integrating liquid dielectrophoresis and hydrogel for cancer immunotherapy application |
指導教授: |
劉承賢
Liu, Cheng-Hsien |
口試委員: |
張晃猷
Chang, Hwan-You 徐琅 Hsu, Long 陳皇銘 Chen, Huang-Ming 盧向成 Lu, Shiang-Cheng |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 腫瘤晶片 、免疫治療 、化學治療 、3D 微環境 |
外文關鍵詞: | Tumor-lab-on-chip, immunotherapy, chemotherapy, 3D microenvironment |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
化療/免疫療法的結合治療是臨床上具成效的治療方式。在KEYNOTE-189中所報導的III期臨床試驗結果顯示,將化療藥物與免疫治療藥物結合使用相比於單獨使用化療藥物後的死亡率顯著地降低,但目前對其機制尚未能清楚地被驗證,且治療的組合也需針對患者進行各別調整,即個人化醫療。腫瘤晶片(Tumor-lab-on-chip)的主要應用目標為透過體外的肺癌免疫模型來模擬腫瘤微環境(TME),進而為研究、治療提供具潛力的方案。腫瘤晶片中使用液體介電泳(LDEP)在氧化銦錫(ITO)電極軌道上驅動含有癌細胞的明膠甲基丙烯酰(GelMA),來形成腫瘤樣水凝膠。在其中,以Jurkat T 細胞包圍著凝固的GelMA-A549細胞來形成類似於癌症免疫的微環境。在腫瘤晶片上癌細胞(A549)會以IL-1β處理,進而誘導Jurkat T細胞進入GelMA的浸潤現象。此結果與單一使用化療藥物相比,在結合化療/免疫療法後的癌細胞死亡率顯著增加約35%。此外,結合化療/免疫療法所造成的癌細胞死亡分佈的趨勢也顯示其獨特的理論機制,這些結果顯示本研究之腫瘤晶片於癌症患者的個人化藥物治療中有著前景廣闊的應用性。
The combo treatment of chemo/immunotherapy is a promising method in treating cancer patients. The results of the phase III KEYNOTE-189 clinical trial (previously untreated metastatic NSQ NSCLC) showed that chemotherapy drugs (carboplatin/cisplatin + pemetrexed) plus immunotherapy drug (pembrolizumab) reduced mortality compared with chemotherapy drug alone, in which the underlying mechanism has not been well demonstrated. The treatment combination also needs to be tuned for each patient, i.e., personalized medicine. Tumor-lab-on-chip aims to mimic the tumor microenvironment with an in-vitro lung cancer-immune model to provide a potential solution for this application. Gelatin methacryloyl-cancer cells were driven on the indium-tin-oxide electrode track using liquid dielectrophoresis to form the tumor-like hydrogel. Jurkat T cells surrounded the solidified GelMA-A549 cells resembling the cancer-immune microenvironment. The immune-cell infiltration phenomena of Jurkat T cells into the GelMA were induced via IL-1β-treated A549 cells on the tumor-lab-on-chip. The death of cancer cells significantly increased by ~35% after chemo/immunotherapy combination treatment compared with the single treatment. The distribution of dead cancer cells treated with chemo/immunotherapy revealed their distinct theoretical mechanisms, indicating the promising applications of this tumor-lab-on-chip for cancer patients in personalized medicine treatments.
[1] Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249.
[2] GARASSINO, M. C., et al. 973MO KEYNOTE-189 5-year update: First-line pembrolizumab (pembro)+ pemetrexed (pem) and platinum vs placebo (pbo)+ pem and platinum for metastatic nonsquamous NSCLC. Annals of Oncology, 2022. 33: S992-S993.
[3] Brascia, D., et al., Resectable IIIA-N2 Non-Small-Cell Lung Cancer (NSCLC): In Search for the Proper Treatment. Cancers (Basel), 2020. 12(8).
[4] Genova, C., et al., Therapeutic Implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade. Front Immunol, 2021. 12: p. 799455.
[5] Chhatre, S., et al., Survival Outcomes with Photodynamic Therapy, Chemotherapy and Radiation in Patients with Stage III or Stage IV Non-Small Cell Lung Cancer. Cancers (Basel), 2021. 13(4).
[6] Petrelli, F., et al., Immune checkpoint inhibitors and chemotherapy in first-line NSCLC: a meta-analysis. Immunotherapy, 2021. 13(7): p. 621-631.
[7] Kommalapati, A. and T. Tanvetyanon, Epigenetic modulation of immunotherapy cofactors to enhance tumor response in lung cancer. Hum Vaccin Immunother, 2021. 17(1): p. 51-54.
[8] Judd, J. and H. Borghaei, Combining Immunotherapy and Chemotherapy for Non-Small Cell Lung Cancer. Thorac Surg Clin, 2020. 30(2): p. 199-206.
[9] Lu, S., et al., Tislelizumab Plus Chemotherapy as First-Line Treatment for Locally Advanced or Metastatic Nonsquamous NSCLC (RATIONALE 304): A Randomized Phase 3 Trial. J Thorac Oncol, 2021. 16(9): p. 1512-1522.
[10] Horinouchi, H., et al., Pembrolizumab plus pemetrexed-platinum for metastatic nonsquamous non-small-cell lung cancer: KEYNOTE-189 Japan Study. Cancer Sci, 2021. 112(8): p. 3255-3265.
[11] Mao, X., et al., Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer, 2021. 20(1): p. 131.
[12] Dornhof, J., et al., Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures. Lab Chip, 2022. 22(2): p. 225-239.
[13] Guller, A. and A. Igrunkova, Engineered Microenvironments for 3D Cell Culture and Regenerative Medicine: Challenges, Advances, and Trends. Bioengineering (Basel), 2022. 10(1).
[14] Ma, L., et al., Current Advances on 3D-Bioprinted Liver Tissue Models. Adv Healthc Mater, 2020. 9(24): p. e2001517.
[15] Shang, M., et al., Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Lab Chip, 2019. 19(3): p. 369-386.
[16] Aubry, G., H.J. Lee, and H. Lu, Advances in Microfluidics: Technical Innovations and Applications in Diagnostics and Therapeutics. Anal Chem, 2023. 95(1): p. 444-467.
[17] Niculescu, A.G., et al., Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci, 2021. 22(4).
[18] Li, J. and C.C. Kim, Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics. Lab Chip, 2020. 20(10): p. 1705-1712.
[19] Wei, Q., et al., Modeling, simulation, and optimization of electrowetting-on-dielectric (EWOD) devices. Biomicrofluidics, 2021. 15(1): p. 014107.
[20] Alias, A.B., et al., Extraction of Cell-free DNA from An Embryo-culture Medium Using Micro-scale Bio-reagents on Ewod. Sci Rep, 2020. 10(1): p. 9708.
[21] Grant, N., et al., Design of a Hand-Held and Battery-Operated Digital Microfluidic Device Using EWOD for Lab-on-a-Chip Applications. Micromachines (Basel), 2021. 12(9).
[22] Friedlaender, A., et al., Targeted Therapies in Early Stage NSCLC: Hype or Hope? Int J Mol Sci, 2020. 21(17).
[23] Sholl, L.M., et al., The Promises and Challenges of Tumor Mutation Burden as an Immunotherapy Biomarker: A Perspective from the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol, 2020. 15(9): p. 1409-1424.
[24] Lu, T. and G. Yang, 18F-FDG PET/CT imaging in the diagnosis of drug-induced lung disease and pulmonary infection in lymphoma. Medicine (Baltimore), 2021. 100(37): p. e27107.
[25] Dallavalle, S., et al., Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat, 2020. 50: p. 100682.
[26] Varghese, E., et al., Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers (Basel), 2020. 12(8).
[27] Kong, K.A., B.D. Thorp, and S.H. Sheth, The Role of Induction Therapy for Sinonasal Cancers. Curr Treat Options Oncol, 2023.
[28] Chan, G.H.J. and C.E. Chee, Making sense of adjuvant chemotherapy in colorectal cancer. J Gastrointest Oncol, 2019. 10(6): p. 1183-1192.
[29] van der Valk, M.J.M., et al., Compliance and tolerability of short-course radiotherapy followed by preoperative chemotherapy and surgery for high-risk rectal cancer - Results of the international randomized RAPIDO-trial. Radiother Oncol, 2020. 147: p. 75-83.
[30] Yoo, R.N. and H.J. Kim, Total neoadjuvant therapy in locally advanced rectal cancer: Role of systemic chemotherapy. Ann Gastroenterol Surg, 2019. 3(4): p. 356-367.
[31] Han, Y., D. Liu, and L. Li, PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res, 2020. 10(3): p. 727-742.
[32] Nath, S., G. Obaid, and T. Hasan, The Course of Immune Stimulation by Photodynamic Therapy: Bridging Fundamentals of Photochemically Induced Immunogenic Cell Death to the Enrichment of T-Cell Repertoire. Photochem Photobiol, 2019. 95(6): p. 1288-1305.
[33] Met, O., et al., Principles of adoptive T cell therapy in cancer. Semin Immunopathol, 2019. 41(1): p. 49-58.
[34] Effern, M., et al., Adoptive T Cell Therapy Targeting Different Gene Products Reveals Diverse and Context-Dependent Immune Evasion in Melanoma. Immunity, 2020. 53(3): p. 564-580 e9.
[35] Raskov, H., et al., Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy. Br J Cancer, 2021. 124(2): p. 359-367.
[36] Robert, C., A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun, 2020. 11(1): p. 3801.
[37] Marin-Acevedo, J.A., E.O. Kimbrough, and Y. Lou, Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol, 2021. 14(1): p. 45.
[38] Wright, J.J., A.C. Powers, and D.B. Johnson, Endocrine toxicities of immune checkpoint inhibitors. Nat Rev Endocrinol, 2021. 17(7): p. 389-399.
[39] Yang, J. and C. Zhang, Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020. 12(4): p. e1612.
[40] Abbott, M. and Y. Ustoyev, Cancer and the Immune System: The History and Background of Immunotherapy. Semin Oncol Nurs, 2019. 35(5): p. 150923.
[41] Northcutt, L.A., A. Suarez-Arnedo, and M. Rafat, Emerging Biomimetic Materials for Studying Tumor and Immune Cell Behavior. Ann Biomed Eng, 2020. 48(7): p. 2064-2077.
[42] Chen, D.S. and I. Mellman, Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013. 39(1): p. 1-10.
[43] Sakai, T., M. Larsen, and K.M. Yamada, Fibronectin requirement in branching morphogenesis. Nature, 2003. 423(6942): p. 876-81.
[44] Parkin, J. and B. Cohen, An overview of the immune system. Lancet, 2001. 357(9270): p. 1777-89.
[45] Batista, F.D. and M.L. Dustin, Cell: cell interactions in the immune system. Immunological reviews, 2013. 251(1): p. 7-12.
[46] Bruzauskaite, I., et al., Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology, 2016. 68(3): p. 355-69.
[47] Langhans, S.A., Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front Pharmacol, 2018. 9: p. 6.
[48] Sun, M., et al., Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue. Polymers (Basel), 2018. 10(11).
[49] Chaicharoenaudomrung, N., P. Kunhorm, and P. Noisa, Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World J Stem Cells, 2019. 11(12): p. 1065-1083.
[50] Fan, D., U. Staufer, and A. Accardo, Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering (Basel), 2019. 6(4).
[51] Sayde, T., et al., Biomaterials for Three-Dimensional Cell Culture: From Applications in Oncology to Nanotechnology. Nanomaterials (Basel), 2021. 11(2).
[52] Chen, Y.C., et al., Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels. Adv Funct Mater, 2012. 22(10): p. 2027-2039.
[53] Caliari, S.R. and J.A. Burdick, A practical guide to hydrogels for cell culture. Nat Methods, 2016. 13(5): p. 405-14.
[54] De Pasquale, G., Additive Manufacturing of Micro-Electro-Mechanical Systems (MEMS). Micromachines (Basel), 2021. 12(11).
[55] Azizipour, N., et al., Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip. Micromachines (Basel), 2020. 11(6).
[56] Allert, R.D., et al., Microfluidic quantum sensing platform for lab-on-a-chip applications. Lab Chip, 2022. 22(24): p. 4831-4840.
[57] Fan, S.K., et al., Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab Chip, 2008. 8(8): p. 1325-31.
[58] M. Y. Chiang., et al., Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels. Sci Adv, 2016. 2(10): p. e1600964
[59] Jones, T.B., Liquid dielectrophoresis on the microscale. Journal of Electrostatics, 2001. 51-52: p. 290-299.
[60] Fan, S.K., et al., Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform. Lab Chip, 2016. 16(5): p. 847-54.
[61] Eda, H., et al., Interleukin-1beta-induced interleukin-6 production in A549 cells is mediated by both phosphatidylinositol 3-kinase and interleukin-1 receptor-associated kinase-4. Cell Biol Int, 2011. 35(4): p. 355-8.
[62] Pepelanova, I., et al., Gelatin-Methacryloyl (GelMA) Hydrogels with Defined Degree of Functionalization as a Versatile Toolkit for 3D Cell Culture and Extrusion Bioprinting. Bioengineering (Basel), 2018. 5(3).
[63] Yin, J., et al., 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. ACS Appl Mater Interfaces, 2018. 10(8): p. 6849-6857.
[64] Chen, Y., et al., Electric Field-Induced Assembly and Alignment of Silver-Coated Cellulose for Polymer Composite Films with Enhanced Dielectric Permittivity and Anisotropic Light Transmission. ACS Appl Mater Interfaces, 2020. 12(21): p. 24242-24249.
[65] Ren, Y., et al., Electric-Field-Induced Gradient Ionogels for Highly Sensitive, Broad-Range-Response, and Freeze/Heat-Resistant Ionic Fingers. Adv Mater, 2021. 33(12): p. e2008486.
[66] Kwizera, E.A., et al., Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles. ACS Biomater Sci Eng, 2021. 7(6): p. 2043-2063.
[67] Weinstock, C., et al., U.S. Food and Drug Administration Approval Summary: Atezolizumab for Metastatic Non-Small Cell Lung Cancer. Clin Cancer Res, 2017. 23(16): p. 4534-4539.
[68] Perez-Garcia, J., et al., Atezolizumab in the treatment of metastatic triple-negative breast cancer. Expert Opin Biol Ther, 2020. 20(9): p. 981-989.
[69] Reddy, S.M., E. Carroll, and R. Nanda, Atezolizumab for the treatment of breast cancer. Expert Rev Anticancer Ther, 2020. 20(3): p. 151-158.