研究生: |
林宜錦 Yi-Chin Lin |
---|---|
論文名稱: |
推廣型G-S-KKM定理之應用 Applications of the Generalized G-S-KKM Theorem |
指導教授: |
張東輝
Tong-Huei Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 16 |
中文關鍵詞: | G-S-KKM定理 、S-KKM定理 、最大元素 、變分不等式 、價格平衡點 |
外文關鍵詞: | G-S-KKM theorem, S-KKM theorem, maximal element, variational inequality, price equilibrium |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們利用推廣型G-S-KKM定理,得到一些最大元素存在性定理、推廣型變分不等式定理和價格平衡點定理。
In this paper, we use the generalized G-S-KKM theorem to get some theorems concerning the existence problem of maximal elements, generalized variational inequalities, and price equilibrium.
[1] K. C. Border, Fixed point Theorems with applications to economics and game theory, Cambridge University Press, 1989.
[2] T. H. Chang, Generalized KKM Theorem and its applications, Far East J. Math. Sci. 4(2)(1996), 137-147
[3] T. H. Chang, KKM property and Leray-Schauder principles, Far East J. Math. Sci. Special Volume(1998), Part3, 337-350.
[4] T. H. Chang, Y. Y. Huang, J. C. Jeng and K. H. Kuo, On S-KKM Property and Related Topics, J. Math. Anal. Appl. 229(1999), 212-227.
[5] T. H. Chang, Y. Y. Huang and J. C. Jeng, Fixed-point theorems for multifunctions in S-KKM class, Nonl. Anal. 44(2001), 1007-1017.
[6] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
[7] T. H. Chang and C. L. Yen, Generalized KKM theorem and its applications, Banyan Math. J. 2(1996), 21-28.
[8] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-233.
[9] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961), 305-310.
[10] B. Knaster, C. Kuratowski, S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale Simplexe, Fund. Math. 14(1929), 132-137.
[11] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97(1983), 151-201.
[12] Y. L. Lee, G-S-KKM theorem and its applications, Graduate Institute of Mathematics and Science, NHCTC,Hsin Chu, Taiwan.(2003)
[13] L. J. Lin, A KKM type theorem and its applications, Bull. Austral. Math. Soc. 59(1999), 481-493.
[14] L. J. Lin, T. H. Chang, S-KKM theorems, saddle points and minimax inequalities, Nonl. Anal. 34(1998), 73-86.
[15] Y. J. Lin and G. Tian, Minimax inequalities equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem, Appl. Math. Optim. 28(1993), 173-179.
[16] F. J. Liu, On a form of KKM Principle and supinfsup inequalities of von Neumann and Ky Fan type, J. Math. Anal. Appl. 155(1991), 420-436.
[17] S. Park, Fundations of the KKM theory via coincidences of composites of upper semi-continuous maps, J. Korean Math. Soc. 31(1994), 164-176.
[18] S. Park, H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197(1996), 173-187.
[19] N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991), 187-195.
[20] G. Q. Tian, Generalized KKM Theorem, minimax inequalities, and their applications. J. Optim. Theory, Appl. 83(1994), 375-389.
[21] J. C. Yao, On the general variational inequality, J. Math. Anal. Appl. 174(1993),550~555