簡易檢索 / 詳目顯示

研究生: 陳羿帆
Chen, Yi-Fan
論文名稱: 以介面工程開發高可靠度與低功耗的多位元儲存鐵電記憶體
Developing High-Reliability and Low-Power Multi-Bit Storage Ferroelectric Memory by Interface Engineering
指導教授: 巫勇賢
Wu, Yung-Hsien
口試委員: 張廖貴術
Chang-Liao, Kuei-Shu
吳永俊
Wu, Yung-Chun
趙天生
Chao, Tien-Sheng
劉柏村
Liu, Po-Chun
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 120
中文關鍵詞: 鐵電記憶體鐵電穿隧元件鐵電電容介面工程多位元操作低功耗
外文關鍵詞: ferroelectric memory, FTJ, FeCaps, interface engineering, multi-bit operation, low power
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著進入大數據與人工智慧世代,電子產品的需求越趨重要,其中數據儲存裝置更是值得被重視,記憶裝置除了需要提供足夠記憶容量,其高效率運算與低功耗也是未來追求的目標。以鐵電材料為基礎開發的新穎鐵電記憶體,不僅具有傳統非揮發性記憶體的特性,其低功耗與高速操作又相容於現有CMOS製程,這些特性使鐵電記憶體被推崇為下世代的記憶體。
    本論文著重於利用介面工程方式改善鐵電電容元件的特性,其中包含提升鐵電穿隧元件的穿隧電阻值,與改善鐵電電容的喚醒、鐵電疇去釘扎和子循環下的特性,甚至提升鐵電電容的耐久度與降低操作電壓等。首先,以較薄的鐵電層搭配高介電常數氮氧化鋁,與使用較低功函數鋁化鈦金屬使鐵電穿隧元件特性得到改善,由於鋁化鈦使勢壘高度下降約1電子伏特,使低阻態時的電流密度上升,進而讓穿隧電阻值得到提升,鋁化鈦鐵電穿隧元件表現出較高的穿隧電阻值30,且經過106耐久度測試,穿隧電阻值仍然可以維持30,而沒有劣化。另一方面,高介電常數氮氧化鋁使操作分壓更容易落在鐵電層上,進而擁有較低的操作電壓約5伏特,並且保有較高的操作速度約500奈秒。接著,為了改善鐵電層喚醒的負面效應,本論文引入二氧化鋯作為種子層與應力層使鐵電電容特性得到大幅提升,在擁有雙層鐵電層與雙層二氧化鋯的結構下,其表現出無喚醒的特性,並且提高了正交晶向的比例使其在初始時即擁有相當大的極化值37 µC/cm2,不僅如此,此結構也首次展示了鐵電元件可以達成四位元操作的能耐,並且可重複操作至107次而沒有崩潰。緊接著,為了提升鐵電電容對於耐久度次數與操作電壓的考量,本論文分別使用了原子層沉積改善介面的製程方式來完成。其中,利用氮化鉭可以提高有效功函數的方式,將其穿插於鐵電層與上下電極之間,藉此提升元件對於電壓的耐受度,並且提升崩潰電壓,使擁有氮化鉭的鐵電電容可以在常數電壓3.55 V連續操作下維持約略10-100秒,並使元件的耐久度次數大幅的提升至3×1010次。此外,使用連續製程沉積的方式,也降低了鐵電層中的氧空缺,透過XPS得知非晶格氧比例約略只有16.7 %,而傳統物理氣相沉積的製程方式則高達29.8 %。另一方面,為了降低元件的操作電壓,論文中使用了非晶氮化鈦穿插於鐵電層間,由於非晶的特性使正交晶向的介面能小於單斜晶向與四方晶向的介面能,使鐵電電容擁有較高的正交晶向比例,進而改善鐵電電容的特性,其中包括在2 V較低的操作電壓即可將鐵電疇完全翻轉。論文中也採用了回春操作模式搭配三位元操作,使元件在連續操作後,發生疲乏時,透過此方法可以回歸初始儲存狀態,使元件的三位元操作的耐久度次數達到3×107次。


    As we enter the era of big data and artificial intelligence, the demand for electronic products becomes increasingly important. Among them, data storage devices are particularly worthy of attention. Memory devices not only need to provide sufficient storage capacity but also aim for high-efficiency computing and low power consumption in the future. Novel ferroelectric memories developed based on ferroelectric materials not only possess characteristics of traditional non-volatile memories but also offer low power consumption and high-speed operation compatible with existing CMOS processes. These features make ferroelectric memory highly regarded as the memory of the next generation.
    This thesis focuses on improving the characteristics of ferroelectric capacitor devices through interface engineering. This includes enhancing the tunneling electro-resistance ratio of ferroelectric tunneling junction and improving the characteristics of wake-up, ferroelectric domain depinning, and sub-cycling of ferroelectric capacitors, as well as enhancing endurance and reducing operating voltage. Initially, thinner ferroelectric layers are paired with high dielectric constant AlON, along with the use of lower work function TiAl, to improve the characteristics of ferroelectric tunneling junction. Due to TiAl lowering the barrier height by approximately 1 eV, the current density in the low resistance state increases, which consequently enhances the tunneling electro-resistance (TER). The TiAl ferroelectric tunneling device demonstrates a high TER value of 30. Furthermore, after 106 endurance cycles, the TER remains at 30 without degradation. On the other hand, the high dielectric constant of AlON makes it easier for the operating voltage to fall across the ferroelectric layer, resulting in a lower operating voltage of about 5 V and maintaining a high operating speed of approximately 500 ns. Furthermore, to mitigate the negative effects of wake-up in the ferroelectric layer, this thesis introduces ZrO¬2 as a seed and stress layer to significantly enhance the characteristics of ferroelectric capacitors. With the structure featuring double ferroelectric layers and double ZrO2, it exhibits wake-up-free characteristics and increases the proportion of orthogonal crystal orientations, resulting in a significantly larger remanent polarization value of 37 µC/cm2 in its pristine state. Moreover, this structure also demonstrates, for the first time, the capability of ferroelectric devices to achieve quadruple-level operations, and it can be repeatedly operated up to 107 times without breakdown. Following that, in order to enhance the considerations of endurance cycles and operating voltage for ferroelectric capacitors, this thesis employs atomic layer deposition to improve interface processes. Specifically, by utilizing TaN to increase the effective work function, it is interleaved between the ferroelectric layer and the upper and lower electrodes. This enhances the device's tolerance to voltage and increases the breakdown voltage. The ferroelectric capacitor with TaN can maintain continuous operation at a constant voltage of 3.55 V for approximately 10-100 seconds, thereby significantly increasing the device's endurance to 3×1010 cycles. Furthermore, employing a continuous deposition process also reduces oxygen vacancies within the ferroelectric layer. Through XPS, it is determined that the proportion of non-lattice oxygen is approximately 16.7%, In contrast, the conventional physical vapor deposition process has a proportion as high as 29.8%. On the other hand, to decrease the operating voltage of the device, the thesis utilizes amorphous TiN interleaved within the ferroelectric layers. The amorphous nature of TiN results in lower interfacial energy for the orthogonal crystal orientation compared to the monoclinic and tetragonal orientations, thereby increasing the proportion of orthogonal crystal orientations in the ferroelectric capacitor and improving its characteristics, including the complete reversal of ferroelectric domains at a relatively low operating voltage of 2 V. The thesis also incorporates a rejuvenation operation mode combined with triple-level cell operations, allowing the device to return to its initial stored state when fatigue occurs after continuous operations. This method significantly increases triple-level cell operation times up to 3×107.

    Contents 摘要 i Abstract iii Acknowledge v Contents vi Figure Captions ix Table List xiii Chapter 1 - 1 - Introduction - 1 - 1-1 Introduction of Ferroelectric Memory - 1 - 1-1-1 Background - 1 - 1-1-2 Zr-Doped-HfO2 Ferroelectric Devices - 2 - 1-2 Ferroelectric Tunnel Junction (FTJ) - 4 - 1-2-1 Tunneling Electro-Resistance Ratio - 4 - 1-2-2 Challenge of TER and Current Density - 5 - 1-2-3 Neural Network Computing - 7 - 1-3 Ferroelectric Capacitors (FeCAPs) - 8 - 1-3-1 Challenge of Enhancing Remanent Polarization - 8 - 1-3-2 Multi-Level Operation and Side Effect - 9 - 1-3-3 Reliability and Operating Voltage - 11 - 1-3-4 Rejuvenation Methods to Improve Endurance - 12 - 1-4 Concept of Process Optimization - 13 - 1-5 Organization of the thesis - 14 - 1-6 References - 17 - Chapter 2 - 38 - 2-1 Introduction - 38 - 2-2 Experimental - 40 - 2-3 Results and Discussion - 40 - 2-3-1Impact of Top Electrode on Behaviors of FTJ Devices - 40 - 2-3-2Mechanisms for the Enhanced TER Ratio - 41 - 2-3-3Endurance Performance and Synaptic Behaviors - 42 - 2-4 Summary - 43 - 2-5 References - 44 - Chapter 3 - 53 - 3-1 Introduction - 53 - 3-2 Experimental - 54 - 3-3 Results and Discussion - 55 - 3-3-1 Impact of Stack Structure on Device Characteristics - 55 - 3-3-2 QLC Capability of Ferroelectric Capacitor - 58 - 3-4 Summary - 58 - 3-5 References - 60 - Chapter 4 - 68 - 4-1 Introduction - 68 - 4-2 Experimental - 70 - 4-3 Results and Discussion - 71 - 4-3-1 Impact of In-Situ ALD Metal on Device Characteristics - 71 - 4-3-2 Properties and Reliability of In-Situ ALD - 72 - 4-3-3 Recovery Method - 74 - 4-4 Summary - 75 - 4-5 References - 76 - Chapter 5 - 93 - 5-1 Introduction - 93 - 5-2 Experimental - 94 - 5-3 Results and Discussion - 95 - 5-3-1 Impact of TiN-interlayer on Device Characteristics - 95 - 5-3-2 Interface Capacitance for Electrical Characteristics of D-HZO - 97 - 5-3-4 Low Operating Voltage for TLC - 99 - 5-4 Summary - 100 - 5-5 References - 101 - Chapter 6 - 116 - 6-1 Conclusions - 116 - 6-2 Further Recommendations - 118 - Publication List - 119 - Journal - 119 - Conference - 120 -

    Chapter 1
    [1.1] D. C. Daly, L. C. Fujino, and K. C. Smith, "Through the Looking Glass-2020 Edition: Trends in Solid-State Circuits From ISSCC," IEEE Solid-State Circuits Mag., vol. 12, no. 1, pp. 8-24, 2020.
    [1.2] A. Sebastian, M. L. Gallo, R. K. Aljameh, and E. Eleftheriou, " In-memory computing with ferroelectrics," Nat Electron., vol. 3, pp. 237-238, 2020.
    [1.3] N. Ramaswamy, A. Calderoni, J. Zahurak, G. Servalli, A. Chhajed, M. Balakrishnan, M. Fischer, M. Hollander, D. P. Ettisserry, A. Liao, K. Karda, M. Jerry, M. Mariani, A. Visconti, B. R. Cook, B.D. Cook, D. Mills, A. Torsi, C. Mouli, E. Byers, M. Helm, S. Pawlowski, S. Shiratake, and N . Chandrasekraran, "Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG," in IEDM Tech. Dig., San Francisco, CA, USA, 2023, pp.1-4.
    [1.4] J. Valasek, "Piezo-electric and allied phenomena in rochelle salt," Physical Review, vol. 17, no. 4, pp. 475-481, 1921.
    [1.5] J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schröder, and T. Mikolajick, "Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG," in Proc. IEEE Symp. VLSI Technol., Honolulu, HI, USA, June. 2012, pp. 25-26.
    [1.6] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in
    hafnium oxide thin films," Appl. Phys. Lett., vol. 99, no. 10, p. 102903, 2011.
    [1.7] J. Zhou, Z. Zhou, X. Wang, H. Wang, C. Sun, K. Han, Y. Kang, and X. Gong, "Demonstration of Ferroelectricity in Al-Doped HfO₂ With a Low Thermal Budget of 500 °C,"IEEE Electron Device Letters, vol. 41, no. 7, pp. 1130-1133, 2020.
    [1.8] S. Mueller, J. Müller, U. Schroeder, and T. Mikolajick, "Reliability Characteristics of Ferroelectric Si:HfO2 Thin Films for Memory Applications," IEEE Trans. Electron Devices, vol. 13, no. 1, pp. 93-97, 2013.
    [1.9] U. Schroeder, C. Richter, M. H. Park, T. Schenk, M. Pešić, M. Hoffmann, F. P. G. Fengler, D. Pohl, B. Rellinghaus, C. Zhou, C. C. Chung, J. L. Jones, and T. Mikolajick, "Lanthanum-Doped Hafnium Oxide: A Robust Ferroelectric Material," ACS Inorg. Chem, vol. 57, no. 5, pp. 2752-2765, 2018.
    [1.10] J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, and L. Frey, "Ferroelectricity in yttrium-doped hafnium oxide," J. Appl. Phys., vol. 110, no. 11, p. 114113, 2011.
    [1.11] S. J. Kim, D. Narayan, J. G. Lee, J. Mohan, J. S. Lee, J. Lee, H. S. Kim, Y. C. Byun, A. T. Lucero, C. D. Young, S. R. Summerfelt, T. San, L. Colombo, and J. Kim, "Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget," Appl. Phys. Lett, vol. 111, no. 24, p. 242901, 2017.
    [1.12] T. Onaya, T. Nabatame, N. Sawamoto, A. Ohi, N. Ikeda, T. Nagata, and A. Ogura, "Ferroelectricity of HfxZr1−xO2 thin films fabricated by 300 °C low temperature process with plasma-enhanced atomic layer deposition," Microelectronic Engineering, vol. 215, no. 15, p. 111013, 2019.
    [1.13] S. J. Kim, Y. C. Jung, J. Mohan, H. J. Kim, S. M. Rho, M. S. Kim, J. G. Yoo, H. R. Park, H. H. Arriaga, J. H. Kim, H. T. Kim, D. H. Choi, J. Jung, S. M. Hwang, H. S. Kim, H. J. Kim, and J. Kim, "Low-thermal-budget (300 °C) ferroelectric TiN/Hf0.5Zr0.5O2/TiN capacitors realized using high-pressure annealing," Appl. Phys. Lett., vol. 119, no. 24, p. 242901, 2021.
    [1.14] E. O. Persson, R. Athle, P. Littow, K. M. Persson, J. Svensson, M. Borg, and L. E. Wernersson, "Reduced annealing temperature for ferroelectric HZO on InAs with enhanced polarization," Appl. Phys. Lett., vol. 116, no. 6, p. 062902, 2020.
    [1.15] S. J. Kim, J. Mohan, S. R. Summerfelt, and J. Kim, "Ferroelectric Hf0.5Zr0.5O2 Thin Films: A Review of Recent Advances," JOM., vol. 71, no. 1, pp. 246-255, 2019.
    [1.16] R. Materlik, C. Kunneth, and A. Kersch, "The origin of ferroelectricity in Hf1−xZrxO2: A computational investigation and a surface energy model," J. Appl. Phys., vol. 117, no. 13, p. 134109, 2015.
    [1.17] M. Hoffmann, U. Schroeder, T. Schenk, T. Shimizu, H. Funakubo, O. Sakata, D. Pohl, M. Drescher, C. Adelmann, R. Materlik, A. Kersch, T. Mikolajick, " Stabilizing the ferroelectric phase in doped hafnium oxide," J. Appl. Phys., vol. 118, no. 7, p. 072006, 2015.
    [1.18] T. Francois, L. Grenouillet, J. Coignus, P. Blaise, C. Carabasse, N. Vaxelaire, T. Magis, F. Aussenac, V. Loup, C. Pellissier, S. Slesazeck, V. Havel, C. Richter, A. Makosiej, B. Giraud, E. T. Breyer, M. Materano, P. Chiquet, M. Bocquet, E. Nowak, U. Schroeder, and F. Gaillard, "Demonstration of BEOL-compatible ferroelectric Hf0.5Zr0.5O2 scaled FeRAM co-integrated with 130nm CMOS for embedded NVM applications," in IEDM Tech. Dig., San Francisco, CA, USA, 2019, pp.15.7.1-15.7.4.
    [1.19] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, " Ferroelectricity in Simple Binary ZrO2 and HfO2," Nano. Lett., vol. 12, no. 8, pp. 4318-4323, 2012.
    [1.20] A. M. Ionescu, “Nanoelectronics: ferroelectric devices show potential,” Nat. Nanotech., vol. 7, no.83, pp. 297-338, 2009, doi: 10.1201/b15852-12.
    [1.21] D. Pantel, and M. Alexe, "Electroresistance effects in ferroelectric tunnel barriers," Phys. Rev. B Condens. Matter., vol. 82, pp. 134105-1–134105-8, 2010.
    [1.22] H. Yamada, V. Garcia, S. Fusil, S. Boyn, M. Marinoa, A. Gloter, S. Xavier, J. Grollier, Eric. Jacquet, C. Carrétéro, C. Deranlot, M. Bibes, and A. Barthélémy, “Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions,” ACS. Nano, vol. 7, pp. 5385-5390, May. 2013.
    [1.23] Z. Wen, C. Li, D. Wu, A. Li, and N. Ming, “Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions,” Nature Materials, vol. 12, pp. 617-621, 2013.
    [1.24] M. Kobayashi, Y. Tagawa, F. Mo, T. Saraya and T. Hiramoto, "Ferroelectric HfO₂ tunnel junction memory with high TER and multi-level operation featuring metal replacement process," IEEE J. Electron Devices Soc., vol. 7, no. 3, pp. 134-139, 2019.
    [1.25] Y. Goh, and S. Jeon, "The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2," Nanotechnology, vol. 29, no. 33, p. 335201, 2018.
    [1.26] P. Chang, G. Du, J. Kang, and X. Liu, "Conduction Mechanisms of Metal-Ferroelectric- Insulator-Semiconductor Tunnel Junction on N- and P-Type Semiconductor," IEEE Electron Device Letters, vol. 42, no. 1, pp. 118-121, 2021.
    [1.27] Y. H. Chu, H. H. Huang, Y. H. Chen, C. H. Hsu, P. J. Tzeng, S. S. Sheu, W. C. Lo, C. I. Wu, and T. H. Hou, “Ultra-thin Hf0.5Zr0.5O2 ferroelectric tunnel junction with high current density,” VLSI-TSA, 2021, pp. 1-2.
    [1.28] H. H. Huang, T. Y. Wu, M. H. Wu , and C. H. Hsu, “A comprehensive modeling framework for ferroelectric tunnel junctions, ” in IEDM Tech. Dig., San Francisco, CA, USA, 2019, pp. 32.2.1-32.2.4.
    [1.29] Y. Goh, J. Hwang, Y. Lee, M. Kim, and S. Jeon, "Ultra-thin Hf0.5Zr0.5O2 thin-film-based ferroelectric tunnel junction via stress induced crystallization," Appl. Phys. Lett., vol. 117, no. 24, p. 242901, 2020.
    [1.30] C. Y. Chan, K. Y. Chen, H. K. Peng, Y. H. Wu, “FeFET memory featuring large memory window and robust endurance of long-pulse cycling by interface engineering using high-k AlON,” in Proc. IEEE Symp. VLSI Technol., Honolulu, HI, USA, 2020, pp. 1-2.
    [1.31] J. Hwang, and Y. Goh, “Effect of insertion of dielectric layer on the performance of hafnia ferroelectric devices,” IEEE Trans. Electron Devices, vol. 68, no. 2, pp. 841-845, 2020.
    [1.32] Y. Liu, Y. Cao, H. Zhu, L. Ji, L. Chen, Q. Sum, and D. W. Zhang, “HfZrOₓ-based ferroelectric tunnel junction with crested symmetric band structure engineering” IEEE Electron Device Lett., vol. 42, no. 9, pp. 1311–1314, 2021.
    [1.33] F. Mo, Y. Tagawa, T. Saraya, T. Hiramoto, and M. Kobayashi, “Scalability Study on Ferroelectric-HfO2 Tunnel Junction Memory Based on Non-equilibrium Green Function Method with Self-consistent Potential,” in IEDM Tech. Dig., San Francisco, CA, USA, 2018, pp. 16.3.1-16.3.4.
    [1.34] S. Fujii and Y. Kamimuta, “First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property,” in Proc. IEEE Symp. VLSI Technol., Honolulu, HI, USA, pp. 1-2.
    [1.35] T. P Ma, and J. P. Han, "Why is nonvolatile ferroelectric memory field-effect transistor still elusive?," IEEE Electron Device Lett., vol. 23, no. 7, pp. 386–388, 2002.
    [1.36] P. Y. Chen, and S. Yu, "Technological Benchmark of Analog Synaptic Devices for Neuroinspired Architectures," IEEE Design & Test, vol. 36, no. 3, pp. 31–38, 2019.
    [1.37] S. Oh, T. Kim, M. Kwak, J. Song, J. Woo, S. Jeon, I. K. Yoo, and H. Hwang, "HfZrOx -Based Ferroelectric Synapse Device With 32 Levels of Conductance States for Neuromorphic Applications," IEEE Electron Device Lett., vol. 38, no. 6, pp. 732–735, 2017.
    [1.38] M. Yan, Q. Zhu, S. Wang, Y. Ren, G. Feng, L. Liu, H. Peng, Y. He, J. Wang, P. Zhou, X. Meng, X. Tang, J. Chu, B. Dkhil, B. Tian, and C. Duan, "Ferroelectric Synaptic Transistor Network for Associative Memory," Advanced Electronic Materials, vol. 7, no. 7, p. 2001276, 2021.
    [1.39] M. Tang, X. Zhan, and J. Chen,"Improved Crossbar Array Architecture for Compensating Interconnection Resistance: Ferroelectric HZO-Based Synapse Case," IEEE J. Electron Devices Soc., vol. 10, pp. 192–196, 2022.
    [1.40] Z. Li, J. Meng, J. Yu, Y. Liu, T. Wang, P. Liu, S. Chen, H. Zhu, Q. Sun, D. W. Zhang, and L. Chen, "CMOS Compatible Low Power Consumption Ferroelectric Synapse for Neuromorphic Computing," IEEE Electron Device Lett., vol. 44, no. 3, pp. 532–535, 2023.
    [1.41] T. Lu, X. Zhao, H. Liu, Z. Yan, R. Zhao, M. Shao, J. Yan, M. Yang, Y. Yang, and T. L. Ren, “Optimal Weight Models for Ferroelectric Synapses Toward Neuromorphic Computing,” IEEE Trans. Electron Devices, vol. 70, no. 5, pp. 2297-2303, 2023.
    [1.42] Y. S. Kuo, S. Y. Lee, C. C. Lee, S. W. Li, and T. S. Chao, “CMOS-Compatible Fabrication of Low-Power Ferroelectric Tunnel Junction for Neural Network Applications,” IEEE Trans. Electron Devices, vol. 68, no. 2, pp. 879-884, 2021.
    [1.43] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, “Ferroelectricity in Hafnium Oxide: CMOS compatible Ferroelectric Field Effect Transistors,” in IEDM Tech. Dig., Washington, DC, USA, 2018, pp. 24.5.1-24.5.4.
    [1.44] R. Cao, Y. Wang, S. Zhao, Y. Yang, X. Zhao, W. Wang, X. Zhang, H. Lv, Q. Liu, and M. Liu, “Effects of Capping Electrode on Ferroelectric Properties of Hf0.5Zr0.5O2 Thin Films” IEEE Electron Device Lett., vol. 39, no. 8, pp. 1207–1210, 2018.
    [1.45] P. Jiang, Y. Yang, W. Wei, T. Gong, Y. Wang, Y. Chen, Y. Ding, S. Lv, B. Wang, M. Chen, Y. Wang, and Q. Luo, “Stress Effects of Interconnecting Metals on Back-End-of-Line Compatible Hf0.5Zr0.5O2 Ferroelectric Capacitors” IEEE Electron Device Lett., vol. 44, no. 4, pp. 602–605, 2023.
    [1.46] W. Hamouda, A. Pancotti, C. Lubin, L. Tortech, C. Richter, T. Mikolajick, U. Schroeder, N. Barrett, “Physical Chemistry of the TiN/Hf0.5Zr0.5O2 Interface,” J. Appl. Phys., vol. 127, no. 6, p. 064105, 2020.
    [1.47] K. Y. Chen, P. H. Chen, and Y. H. Wu, “Excellent Reliability of Ferroelectric HfZrOx Free from Wake-Up and Fatigue Effects by NH3 Plasma Treatment,” in Proc. Symp. VLSI Technol., Kyoto, Japan, 2017, pp. T84–T85.
    [1.48] Y. Lee, Y. Goh, J. Hwang, D. Das, and S. Jeon, “The Influence of Top and Bottom Metal Electrodes on Ferroelectricity of Hafnia,” IEEE Trans. Electron Devices, vol. 68, no. 2, pp. 523-528, 2021.
    [1.49] R. Cao, Y. Wang, S. Zhao, Y. Yang, X. Zhao, W. Wang, X. Zhang, H. Lv, Qi. Liu, and M. Liu, “Effects of Capping Electrode on Ferroelectric Properties of Hf0.5Zr0.5O2 Thin Films,” IEEE Electron Device Lett., vol. 39, no. 8, pp. 1207–1210, 2018.
    [1.50] M. Pešić, F. P. G. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D. Grimley, X. Sang, J. M. LeBeau, S. Slesazeck, U. Schroeder, T. Mikolajick, “Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors,” Adv. Funct. Mater., vol. 26, pp. 4601–4612, 2016.
    [1.51] V. Gaddam, D. Das, and S. Jeon, “Insertion of HfO2 Seed/Dielectric Layer to the Ferroelectric HZO Films for Heightened Remanent Polarization in MFM Capacitors,” IEEE Trans. Electron Devices, vol. 67, no. 2, pp. 745-750, 2020.
    [1.52] H. K. Peng, T. C. Lai, Y. C. Kao, C. M. Liu, P. J. Wu, and Y. H. Wu, “Improved Reliability for Back-End-of-Line Compatible Ferroelectric Capacitor With 3 Bits/Cell Storage Capability by Interface Engineering and Post Deposition Annealing,” IEEE Electron Device Lett., vol. 43, no. 12, pp. 2180–2183, 2022.
    [1.53] T. Onaya, T. Nabatame, N. Sawamoto, A. Ohi, N. Ikeda, T. Chikyow, and A. Ogura, “Improvement in ferroelectricity of HfxZr1%xO2 thin films using ZrO2 seed layer,” Applied Physics Express, vol. 10, p. 081501, 2017.
    [1.54] T. Onaya, T. Nabatame, N. Sawamoto, A. Ohi, N. Ikeda, T. Nagata, and A. Ogura, "Improvement in ferroelectricity of HfxZr1−xO2 thin films using top- and bottom-ZrO2 nucleation layers," Appl. Phys. Lett., vol. 7, p. 061107, 2019.
    [1.55] W. Xiao, C. Liu, Y. Peng, S. Zheng, Q. Feng, C. Zhang, J. Zhang, Y. Hao, M. Liao, and Y. Zhou, “Performance Improvement of Hf0.5Zr0.5O2-Based Ferroelectric-Field-Effect Transistors With ZrO2 Seed Layers,” IEEE Electron Device Lett., vol. 40, no. 5, pp. 714–717, 2019.
    [1.56] D. Das, V. Gaddam, and S. Jeon, “Demonstration of High Ferroelectricity (Pr~29 μC/cm2) in Zr Rich HfxZr1−xO2 Films,” IEEE Electron Device Lett., vol. 41, no. 1, pp. 34–37, 2020.
    [1.57] Y. Peng, W. Xiao, Y. Liu, C. Jin, X. Deng, Y. Zhang, F. Liu, Y. Zheng, Y. Cheng, B. Chen, X. Yu, Y. Hao, and G. Han, “HfO2-ZrO2 Superlattice Ferroelectric Capacitor With Improved Endurance Performance and Higher Fatigue Recovery Capability,” IEEE Electron Device Lett., vol. 43, no. 2, pp. 216–219, 2022.
    [1.58] Z. Zhao, Y. R. Chen, J. F. Wang, Y. W. Chen, J. R. Zou, Y. Lin, Y. Xing, C. W. Liu, and C. Hu, “Engineering Hf0.5Zr0.5O2 Ferroelectric/Anti- Ferroelectric Phases With Oxygen Vacancy and Interface Energy Achieving High Remanent Polarization and Dielectric Constants,” IEEE Electron Device Lett., vol. 43, no. 4, pp. 553–556, 2022.
    [1.59] K. Lee, H. J. Lee, T. Y. Lee, H. H. Lim, M. S. Song, H. K. Yoo, D. I. Suh, J. G. Lee, Z. Zhu, A. Yoon, M. R. MacDonald, X. Lei, K. Park, J. Park, J. H. Lee, and S. C. Chae, “Stable Subloop Behavior in Ferroelectric Si-Doped HfO2,” ACS Appl. Mater. Interfaces, vol. 11, no. 42, pp. 38929–38936, 2019.
    [1.60] A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada,“Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films,” Phys. Rev. B- Condens. Matter Mater. Phys., vol. 66, no. 21, pp. 1–6, 2002.
    [1.61] C. Alessandri, P. Pandey, and A. C. Seabaugh,“Experimentally Validated, Predictive Monte Carlo Modeling of Ferroelectric Dynamics and Variability,” in IEDM Tech. Dig., San Francisco, CA, USA, 2018, pp. 16.2.1-16.2.4.
    [1.62] C. Alessandri, P. Pandey, A. Abusleme, and A. Seabaugh, “Monte Carlo Simulation of Switching Dynamics in Polycrystalline Ferroelectric Capacitors,” IEEE Trans. Electron Devices, vol. 66, no. 8, pp. 3527-3534, 2019.
    [1.63] S. Li, D. Zhou, Z. Shi, M. Hoffmann, T. Mikolajick, and Uwe Schroeder, “Involvement of Unsaturated Switching in the Endurance Cycling of Si-doped HfO2 Ferroelectric Thin Films,” Advanced Electronic Materials, vol. 6, no. 8, p. 2000264, 2020.
    [1.64] Y. K. Liang, J. S. Wu, C. Y. Teng, H. Lun. Ko, Q. H. Luc, C. J. Su, E. Y. Chang, and C. H. Lin, “Demonstration of highly robust 5 nm Hf0.5Zr0.5O₂ ultra-thin ferroelectric capacitor by improving interface quality,” IEEE Electron Device Lett., vol. 42, no. 9, pp. 1299-1302, 2021.
    [1.65] K. Toprasertpong, K. Tahara, Y. Hikosaka, K. Nakamura, H. Saito, M. Takenaka, and S. Takagi, “Low Operating Voltage, Improved Breakdown Tolerance, and High Endurance in Hf0.5Zr0.5O2 Ferroelectric Capacitors Achieved by Thickness Scaling Down to 4 nm for Embedded Ferroelectric Memory,” ACS Appl. Mater. Interfaces, vol. 14, no. 45, pp. 51137–51148, 2022.
    [1.66] H. Saito, T. Sugimachi, K. Nakamura, S. Ozawa, N. Sashida, S. Mihara, Y. Hikosaka, W. Wang, T. Hori, K. Takai, M. Nakazawa, N. Kosugi, M. Okuda, M. Hamada, S. Kawashima, T. Eshita, and M. Matsumiya, “A Triple-Protection Structured COB FRAM with 1.2-V Operation and 1017-Cycle Endurance,” IEEE International Memory Workshop (IMW), Monterey, CA, USA, 2015, pp. 1-4.
    [1.67] A. G. Chernikova, M. G. Kozodaev, D. V. Negrov, E. V. Korostylev, M. H. Park, U. Schroeder, C. S. Hwang, and A. M. Markeev, “Improved Ferroelectric Switching Endurance of La-Doped Hf0.5Zr0.5O2 Thin Films,” ACS Appl. Mater. Interfaces, vol. 10, no. 3, pp. 2701–2708, 2017.
    [1.68] R. Cao, B. Song, D. Shang, Y. Yang, Q. Luo, S. Wu, Y. Li, Y. Wang, H. Lv, Q. Liu, and Liu, “Improvement of Endurance in HZO-Based Ferroelectric Capacitor Using Ru Electrode,” IEEE Electron Device Lett., vol. 40, no. 11, pp. 1744-1747, 2019.
    [1.69] M. Sung, K. Rho, J. Kim, J. Cheon, K. Choi, D. Kim, H. Em, G. Park, J. Woo, Y. Lee, J. Ko, M. Kim, G. Lee, S. W. Ryu, D. S. Sheen, Y. Joo, S. Kim, S. Kim, C. H. Cho, M. H. Na, and J. Kim,“Low Voltage and High Speed 1Xnm 1T1C FE-RAM with Ultra-Thin 5nm HZO,” in IEDM Tech. Dig., San Francisco, CA, USA, 2018, pp. 33.3.1-33.3.4.
    [1.70] C. Jiang, R. Li, X. Wang, H. Shang, Y. Zhang, and P. K. Liaw, “Diffusion barrier performance of AlCrTaTiZr/AlCrTaTiZr-N high-entropy alloy films for Cu/Si connect system,” MDPI Entropy, vol. 22, no.2, pp. 234, 2020.
    [1.71] Z. Zhao, Y. R. Chen, Y. W. Chen, J. F. Wang, Y. Xing, W. Ji, G. H. Chen, J. Y. Lee, R. Dobhal, and C. W. Liu, “Engineering Hf0.5Zr0.5O2 Ferroelectric Tunnel Junctions With Amorphous WOx Bottom Electrodes Achieving High Remanent Polarization and Record Low-Operating Voltage,” IEEE Trans. Electron Devices, vol. 70, no. 10, pp. 5022-5027, 2023.
    [1.72] K. Ni, W. Chakraborty, J. Smith, B. Grisafe, and S. Datta, “Fundamental Understanding and Control of Device-to-Device Variation in Deeply Scaled Ferroelectric FETs,” in Proc. Symp. VLSI Technol., , Kyoto, Japan 2019, pp. T40–T41.
    [1.73] K. Choi, H. N. Alshareef, H. C. Wen, H. Harris, H. Luan, Y. Senzaki, P. Lysaght, P. Majhi; and B. H. Lee, “Effective work function modification of atomic-layer-deposited-TaN film by capping layer,” Appl. Phys. Lett., vol. 89, no. 3, p. 032113, 2006.
    [1.74] M. Xueli, Y. Hong, W. Wenwu, Y. Huaxiang, Z. Huilong, Z. Chao, C. Dapeng, and Y. Tianchun, “An effective work-function tuning method of nMOSCAP with high-k/metal gate by TiN/TaN double-layer stack thickness” J. Semicond., vol. 35, no.9, p. 096001, 2014.
    [1.75] K. Choi, H. C. Wen, H. Alshareef, R. Harris, P. Lysaght, H. Luan, P. Majhi, and B. H. Lee, “The effect of metal thickness, overlayer and high-k surface treatment on the effective work function of metal electrode,” in ESSDERC., Grenoble, France, 2005, pp. 101-104.
    [1.76] Y. K. Chang, P. J. Liao, S. H. Yeong, Y. M. Lin, J. H. Lee, W. Tsai, P. C. McIntyre, and C. T. Lin, “The Field-dependence Endurance Model and Its Mutual Effect in Hf-based Ferroelectrics,” IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 2022, pp. 3A.1-1-3A.1-5.
    [1.77] J. Okuno, T. Yonai, T. Kunihiro, Y. Shuto, R. Alcala, M. Lederer, K. Seidel, T. Mikolajick, U. Schroeder, M. Tsukamoto, and T. Umebayashi, “Investigation of Recovery Phenomena in Hf0.5Zr0.5O2-Based 1T1C FeRAM”, IEEE J. Electron Devices Soc., vol. 11, pp. 43–46, 2023.
    [1.78] T. Gong, J. Li, H. Yu, Y. Xu, P. Jiang, Y. Wang, P. Yuan, Y. Wang, Y. Chen, Y. Ding, Y. Yang, Y. Wang, B. Chen, and Q. Luo, “Observation and Characterization of Recoverable Fatigue Process Under Low-Electric Field (<1.8MV/cm) in HfZrO Ferroelectric Film,” IEEE Electron Device Lett., vol. 42, no. 9, pp. 1288-1290, 2021.
    [1.79] K. Toprasertpong, K. Tahara, Y. Hikosaka, K. Nakamura, H. Saito, M. Takenaka, and S. Takagi, “Low Operating Voltage, Improved Breakdown Tolerance, and High Endurance in Hf0.5Zr0.5O2 Ferroelectric Capacitors Achieved by Thickness Scaling Down to 4 nm for Embedded Ferroelectric Memory,” ACS Appl. Mater. Interfaces, vol. 14, pp. 51137–51148, 2022.
    [1.80] M. G. Kozodaev, A. G. Chernikova, E. V. Korostylev, M. H. Park, R. R. Khakimov, C. S. Hwang, A. M. Markeev, “Mitigating wakeup effect and improving endurance of ferroelectric HfO2-ZrO2 thin films by careful La-doping,” J. Appl. Phys, vol. 125, p. 034101,2019.
    Chapter 2
    [2.1] J. M´uller, P. Polakowski, S. Riedel, S. Mueller, E. Yurchuk, and T. Mikolajick, “Ferroelectric hafnium oxide a game changer to FRAM?” in Proc. 14th Annu. Non-Volatile Memory Technol. Symp. (NVMTS), Jeju, Korea, 2014, pp. 1–7.
    [2.2] Y. D. Lin, S. S. Sheu, T. H. Hou, W. C. Lo, M. H. Lee, M. F. Chang, Y. C. King, C. J. Lin, H. Y. Lee, Y. T. Tang, P. C. Yeh, H. Y. Yang, P. S. Yeh, C. Y. Wang, J. W. Su, and S. H. Li, “3D scalable, wake-up free, and highly reliable FRAM technology with stress engineered HfZrOx ,” in IEDM Tech. Dig., San Francisco, CA, USA, 2019, pp. 346–349.
    [2.3] C.-Y. Chan, K.-Y. Chen, H.-K. Peng, and Y.-H. Wu, “FeFET memory featuring large memory window and robust endurance of longpulse cycling by interface engineering using high-k AlON,” in Proc. IEEE Symp. VLSI Technol., Honolulu, HI, USA, 2020, pp. 1–2.
    [2.4] H.-K. Peng, C.-Y. Chan, K.-Y. Chen, and Y.-H. Wu, “Enabling large memory window and high reliability for FeFET memory by integrating AlON interfacial layer,” Appl. Phys. Lett., vol. 118, no. 10, p.103503, 2021.
    [2.5] S.-C. Yan, G.-M. Lan, C.-J. Sun, Y.-H. Chen, C.-H. Wu, H.-K. Peng, Y.-H. Lin, Y.-H. Wu, and Y.-C. Wu, “High speed and large memory window ferroelectric HfZrO2 FinFET for high-density nonvolatile memory,” IEEE Electron Device Lett., vol. 42, no. 9, pp. 1307–1310, 2021.
    [2.6] H. Ryu, H. Wu, F. Rao, and W. Zhu, “Ferroelectric tunneling junctions based on aluminum oxide/ zirconium-doped hafnium oxide for neuromorphic computing,” Sci. Rep., vol. 9, no. 1, pp. 1–8, 2019.
    [2.7] M. Kobayashi, Y. Tagawa, F. Mo, T. Saraya, and T. Hiramoto,“Ferroelectric HfO2 tunnel junction memory with high TER and multi-level operation featuring metal replacement process,” IEEE J. Electron Devices Soc., vol. 7, pp. 134–139, 2019.
    [2.8] Y.-S. Kuo, S.-Y. Lee, C.-C. Lee, S.-W. Li, and T.-S. Chao, “CMOS compatible fabrication of low-power ferroelectric tunnel junction for neural network applications,” IEEE Trans. Electron Devices, vol. 68, no. 2, pp. 879–884, 2021.
    [2.9] F. Mo, Y. Tagawa, T. Saraya, T. Hiramoto, and M. Kobayashi,“Scalability study on ferroclcctric-HfO2 tunnel junction memory based on non-equilibrium green function method with self-consistent potential,” in IEDM Tech. Dig., San Francisco, CA, USA, 2018, pp. 372–375.
    [2.10] J. Hwang, Y. Goh, and S. Jeon, “Effect of forming gas high-pressure annealing on metal-ferroelectric-semiconductor hafnia ferroelectric tunnel junction,” IEEE Electron Device Lett., vol. 41, no. 8, pp. 1193–1196, 2020.
    [2.11] E. O. Filatova, A. S. Konashuk, S. S. Sakhonenkov, A. U. Gaisin, N. M. Kolomiiets, V. V. Afanas’ev, and H. F. W. Dekkers, “Mechanisms of TiN effective workfunction tuning at interfaces with HfO2 and SiO2,” J. Phys. Chem. C, vol. 124, no. 28, pp. 15547–15557, 2020.
    [2.12] K. Toprasertpong, K. Tahara, M. Takenaka, and S. Takagi, “Evaluation of polarization characteristics in metal/ferroelectric/semiconductor capacitors and ferroelectric field-effect transistors,” Appl. Phys. Lett., vol. 116, no. 24, p. 242903, 2020.
    [2.13] D. Pantel and M. Alexe, “Electroresistance effects in ferroelectric tunnel barriers,” Phys. Rev. B, Condens. Matter, vol. 82, no. 13, pp. 13410501–13410508, 2010.
    [2.14] F.-C. Chiu, “A review on conduction mechanisms in dielectric films,” Adv. Mater. Sci. Eng., vol. 2014, pp. 1–18, 2014.
    [2.15] M. Yamaguchi, S. Fujii, Y. Kamimuta, S. Kabuyanagi, T. Ino, Y. Nakasaki, R. Takaishi, R. Ichihara, and M. Saitoh, “Impact of specific failure mechanisms on endurance improvement for HfO2- based ferroelectric tunnel junction memory,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Burlingame, CA, USA, 2018, pp. 6D.2-1–6D.2-6.
    [2.16] N. Raghavan, K. L. Pey, and K. Shubhakar, “High-k dielectric breakdown in nanoscale logic devices—Scientific insight and technology impact,” Microelectron. Rel., vol. 54, no. 5, pp. 847–860, 2014.
    [2.17] P. J. Liao, Y. K. Chang, Y. H. Lee, Y. M. Lin, S. H. Yeong, R. L. Hwang, V. Hou, C. H. Nien, R. Lu, and C. T. Lin, “Characterization of fatigue and its recovery behavior in ferroelectric HfZrO,” in IEEE Symposium on VLSI Technology, Kyoto, Japan, 2021, pp. 1–2.
    [2.18] Y. Liu, Y. Cao, H. Zhu, L. Ji, L. Chen, Q. Sun, and D. W. Zhang, “HfZrOx -based ferroelectric tunnel junction with crested symmetric band structure engineering,” IEEE Electron Device Lett., vol. 42, no. 9, pp. 1311–1314, 2021.
    Chapter 3
    [3.1] Y. Luo, Y.-C. Luc, and S. Yu, “A FeRAM based volatile/nonvolatile dual-mode buffer memory for deep neural network training,” in Proc. IEEE DATE, Grenoble, France, 2021, pp. 1871–1876.
    [3.2] S.-C. Chang, N. Haratipour, S. Shivaraman, C. Neumann, S. Atanasov, J. Peck, N. Kabir, I.-C. Tung, H. Liu, B. Krist, A. Oni, S. Sung, B. Doyle, G. Allen, C. Engel, A. Roy, T. Hoff, H. Li, F. Hamzaoglu, R. Bristol, M. Radosavljevic, B. Turkot, M. Metz, I. Young, J. Kavalieros, and U. Avci, “FeRAM using anti-ferroelectric capacitors for high-speed and high-density embedded memory,” in IEDM Tech. Dig., San Francisco, CA, USA, 2021, pp. 701–704.
    [3.3] S. Slesazeck, U. Schroeder, and T. Mikolajick, “Embedding hafnium oxide based FeFETs in the memory landscape,” in Proc. IEEE ICICDT, Otranto, Italy, 2018, pp. 121–124.
    [3.4] K. Lee, H.-J. Lee, T. Y. Lee, H. H. Lim, M. S. Song, H. K. Yoo, D. I. Suh, J. G. Lee, Z. Zhu, A. Yoon, M. R. MacDonald, X. Lei, K. Park, J. Park, J. H. Lee, and S. C. Chae, “Stable subloop behavior in ferroelectric Si-doped HfO2,” ACS Appl. Mater. Interfaces, vol. 11, no. 42, pp. 38929–38936, 2019.
    [3.5] H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, W. Jeon, T. Gwon, T. Moon, K. D. Kim, and C. S. Hwang, “Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer,” Appl. Phys. Lett., vol. 105, no. 19, p. 192903, 2014.
    [3.6] T. Ali, P. Polakowski, K. Kuhnel, M. Czernohorsky, T. Kämpfe, M. Rudolph, B. Pätzold, D. Lehninger, F. Müller, R. Olivo, M. Lederer, R. Hoffmann, P. Steinke, K. Zimmermann, U. Muhle, K. Seidel, and J. Müller, “A multilevel FeFET memory device based on laminated HSO and HZO ferroelectric layers for high-density storage,” in IEDM Tech. Dig., San Francisco, CA, USA, 2019, pp. 28.7.1–28.7.4,
    [3.7] Y. Xu, Y. Yang, S. Zhao, T. Gong, P. Jiang, S. Lv, H. Yu, P. Yuan, Z. Dang, Y. Ding, Y. Wang, Y. Chen, Y. Wang, J. Bi, and Q. Luo, “Robust breakdown reliability and improved endurance in Hf0.5Zr0.5O2 ferroelectric using grain boundary interruption,” IEEE Trans. Electron Devices, vol. 69, no. 1, pp. 430–433, 2022.
    [3.8] Y.-C. Li, X.-X. Li, M.-K. Wu, B.-Y. Cui, X.-P. Wang, T. Huang, Z.-Y. Gu, Z.-G. Ji, Y.-G. Yang, D. W. Zhang, and H.-L. Lu, “Dual Al2O3/Hf0.5Zr0.5O2 stack thin films for improved ferroelectricity and reliability,” IEEE Electron Device Lett., vol. 43, no. 8, pp. 1235–1238, 2022.
    [3.9] T. Onaya, T. Nabatame, N. Sawamoto, A. Ohi, N. Ikeda, T. Chikyow, and A. Ogura, “Improvement in ferroelectricity of Hfx Zr1−xO2thin films using ZrO2 seed layer,” Appl. Phys. Exp., vol. 10, no. 8, p. 081501, 2017.
    [3.10] T. Onaya, T. Nabatame, M. Inoue, T. Sawada, H. Ota, and Y. Morita,“Wake-up-free properties and high fatigue resistance of Hfx Zr1−xO2- based metal–ferroelectric–semiconductor using top ZrO2 nucleation layer at low thermal budget (300 ◦C),” APL Mater., vol. 10, no. 5, p. 051110, 2022.
    [3.11] T. Onaya, T. Nabatame, M. Inoue, Y. C. Jung, H. Hernandez-Arriaga, J. Mohan, H. S. Kim, N. Sawamoto, T. Nagata, J. Kim, and A. Ogura, “Improvement in ferroelectricity and breakdown voltage of over 20-nmthick Hfx Zr1−xO2/ZrO2 bilayer by atomic layer deposition,” Appl. Phys. Lett., vol. 117, no. 23, p. 232902, 2020.
    [3.12] T. Onaya, T. Nabatame, N. Sawamoto, A. Ohi, N. Ikeda, T. Nagata, and A. Ogura, “Improvement in ferroelectricity of Hfx Zr1−xO2 thin films using top- and bottom-ZrO2 nucleation layers,” APL Mater., vol. 7, no. 6, p. 061107, 2019.
    [3.13] V. Gaddam, D. Das, and S. Jeon, “Insertion of HfO2 seed/dielectric layer to the ferroelectric HZO films for heightened remanent polarization in MFM capacitors,” IEEE Trans. Electron Devices, vol. 67, no. 2, pp. 745–750, 2020.
    [3.14] N. Gong and T.-P. Ma, “Why is FE–HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? A retention perspective,” IEEE Electron Device Lett., vol. 37, no. 9, pp. 1123–1126, 2016.
    [3.15] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in simple binary ZrO2 and HfO2,” Nano Lett., vol. 12, no. 8, pp. 4318–4323, 2012.
    [3.16] S. J. Lee, M. J. Kim, T. Y. Lee, T. I. Lee, J. H. Bong, S. W. Shin, S. H. Kim, W. S. Hwang, and B. J. Cho, “Effect of ZrO2 interfacial layer on forming ferroelectric Hfx ZryOz on Si substrate,” AIP Adv., vol. 9, no. 12, p. 125020, 2019.
    [3.17] C. Zacharaki, P. Tsipas, S. Chaitoglou, S. Fragkos, M. Axiotis, A. Lagoyiannis, R. Negrea, L. Pintilie, and A. Dimoulas, “Very large remanent polarization in ferroelectric Hf1−x ZrxO2 grown on Ge substrates by plasma assisted atomic oxygen deposition,” Appl. Phys. Lett., vol. 114, no. 11, p. 112901, 2019.
    [3.18] Y. Xu, Y. Yang, S. Zhao, T. Gong, P. Jiang, Y. Wang, P. Yuan, Z. Dang, Y. Chen, S. Lv, Y. Ding, Y. Wang, J. Bi, and Q. Luo, “Improved multibit storage reliability by design of ferroelectric modulated antiferroelectric memory,” IEEE Trans. Electron Devices, vol. 69, no. 4, pp. 2145–2150, 2022.
    [3.19] K. Ni, J. Smith, H. Ye, B. Grisafe, G. B. Rayner, A. Kummel, and S. Datta, “A novel ferroelectric superlattice based multi-level cell non-volatile memory,” in IEDM Tech. Dig., San Francisco, CA, USA, 2019, pp. 28.8.1–28.8.4.
    Chapter 4
    [4.1] S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,” Proc. IEEE, vol. 106, no. 2, pp. 260–285, 2018.
    [4.2] K. Lee et al., “Stable subloop behavior in ferroelectric Si-doped HfO2,” ACS Appl. Mater. Interface, vol. 11, no. 42, pp. 38929–38936, 2019.
    [4.3] H.-K. Peng, T.-C. Lai, Y.-C. Kao, C.-M. Liu, P.-J. Wu, and Y.-H. Wu, “Improved reliability for back-end-of-line compatible ferroelectric capacitor with 3 bits/cell storage capability by interface engineering and post deposition annealing,” IEEE Electron Device Lett., vol. 43, no. 12, pp. 2180–2183, 2022.
    [4.4] Y.-F. Chen, C.-W. Hu, Y.-C. Kao, C.-Y. Kuo, P.-J. Wu, and Y.-H. Wu, “Wake-up free ferroelectric capacitor with quadruple-level storage by inserting ZrO2 interlayer and bottom layer in HfZrOx,” IEEE Electron Device Lett., vol. 44, no. 3, pp. 400–403, 2023.
    [4.5] S. Slesazeck, T. Ravsher, V. Havel, E. T. Breyer, H. Mulaosmanovic, and T. Mikolajick, “A 2TnC ferroelectric memory gain cell suitable for compute-in-memory and neuromorphic application,” in IEDM Tech. Dig., San Francisco, CA, USA, 2019, pp. 38.6.1–38.6.4.
    [4.6] H.-K. Peng, Y.-K. Huang, C.-P. Chou, and Y.-H. Wu, “Recognizing spatiotemporal features by a neuromorphic network with highly reliable ferroelectric capacitors on epitaxial GeSn film,” ACS Appl. Mater. Interface, vol. 13, no. 22, pp. 26630–26638, 2021.
    [4.7] P. J. Liao, Y. K. Chang, Y. H. Lee, Y. M. Lin, S. H. Yeong, R. L. Hwang, V. Hou, C. H. Nien, R. Lu, and C. T. Lin, “Characterization of fatigue and its recovery behavior in ferroelectric HfZrO,” in Proc. Symp. VLSI Technol., Kyoto, Japan, 2021, pp. 1–2.
    [4.8] H.-K. Peng, C.-Y. Chiu, Y.-C. Kao, P.-J. Wu, and Y.-H. Wu, “Enhanced reliability, switching speed and uniformity for ferroelectric HfZrOx on epitaxial Ge film by post deposition annealing for oxygen vacancy control,” IEEE Trans. Electron Devices, vol. 69, no. 7, pp. 4002–4009, 2022.
    [4.9] K.-Y. Chen, P.-H. Chen, R.-W. Kao, Y.-X. Lin, and Y.-H. Wu, “Impact of plasma treatment on reliability performance for HfZrOx - based metal-ferroelectric-metal capacitors,” IEEE Electron Device Lett., vol. 39, no. 1, pp. 87–90, 2018.
    [4.10] K. Y. Hsiang, Y. C. Chen, F. S. Chang, C. Y. Lin, C. Y. Liao, Z. F. Lou, J. Y. Lee, W. C. Ray, Z. X. Li, C. C. Wang, H. C. Tseng, P. H. Chen, J. H. Tsai, M.H. Liao, T. H. Hou, C. W. Liu, P. T. Huang, P. Su, and M. H. Lee, “Novel opposite polarity cycling recovery (OPCR) of HfZrO2 antiferroelectric-RAM with an access scheme toward unlimited endurance,” in IEDM Tech. Dig., San Francisco, CA, USA, 2022, p. 32.
    [4.11] K. Y. Hsiang, J. Y. Lee, F. S. Chang, Z. F. Lou, Z. X. Li, Z. H. Li, J. H. Chen, C. W. Liu, T. H. Hou, and M. H. Lee, “FeRAM recovery up to 200 periods with accumulated endurance 1012 cycles and an applicable array circuit toward unlimited eNVM operations,” in Proc. IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits), Kyoto, Japan, 2023, pp. 1–2.
    [4.12] Y. K. Liang, J. S. Wu, C. Y. Teng, H. Lun. Ko, Q. H. Luc, C. J. Su, E. Y. Chang, and C. H. Lin, “Demonstration of highly robust 5 nm Hf0.5Zr0.5O2 ultra-thin ferroelectric capacitor by improving interface quality,” IEEE Electron Device Lett., vol. 42, no. 9, pp. 1299–1302, 2021.
    [4.13] C. Cavalcante, C. F. Beranger, P. Batude, X. Garros, X. Federspiel, J. Lacord, S. Kerdiles, A. S. Royet, P. A. Alba, O. Rozeau, V. Barrar, F. Arnaud, N. Planes, P. O. Sassoulas, E. Ghegin, R. Beneyton, M. Gregoire, O. Weber, C. Guerin, L. Arnaud, S. Moreau, R. Kies, G. Romano, N. Rambal, A. Magalhaes, G. Ghibaudo, J. P. Colinge, M. Vinet, and G. Andrieu, “28nm FDSOI CMOS technology (FEOL and BEOL) thermal stability for 3D sequential integration: Yield and reliability analysis,” in Proc. IEEE Symp. VLSI Technol., Honolulu, HI, USA, 2020, pp. 1–2.
    [4.14] Y. K. Liang, Y. S. Huang, L. C. Peng, T. Y. Yang, B. F. Young, C. C. Lu, S. H. Yeong, Y. M. Lin, C. J. Su, E. Y. Chang, and C. H. Lin, “Effects of annealing temperature on TiN/Hf0.5Zr0.5O2/TiN ferroelectric capacitor prepared by in-situ like consecutive atomic layer deposition,” IEEE Trans. Nanotechnol., vol. 21, pp. 328–331, 2022.
    [4.15] Z. Zhao, Y. R. Chen, J. F. Wang, Y. W. Chen, J. R. Zou, Y. Lin, Y. Xing, C. W. Liu, and C. Hu, “Engineering Hf0.5Zr0.5O2 ferroelectric/anti-ferroelectric phases with oxygen vacancy and interface energy achieving high remanent polarization and dielectric constants,” IEEE Electron Device Lett., vol. 43, no. 4, pp. 553–556, 2022.
    [4.16] C. Jiang, R. Li, X. Wang, H. Shang, Y. Zhang, and P. K. Liaw, “Diffusion barrier performance of AlCrTaTiZr/AlCrTaTiZr-N high-entropy alloy films for Cu/Si connect system,” Entropy, vol. 22, no. 2, p. 234, 2020.
    [4.17] Z. Zhao, Y. R. Chen, Y. W. Chen, W. H. Hsieh, J. F. Wang, J. Y. Lee, Y. Xing, G. H. Chen, and C. W. Liu, “Towards epitaxial ferroelectric HZO on n+-Si/Ge substrates achieving record 2Pr = 84 μC/cm2 and endurance > 1E11,” in Proc. IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits), Kyoto, Japan, Jun. 2023, pp. 1–2.
    [4.18] L. Yu, C. Stampfl, D. Marshall, T. Eshrich, V. Narayanan, J. M. Rowell, N. Newman, and A. J. Freeman, “Mechanism and control of the metal-to-insulator transition in rocksalt tantalum nitride,” Phys. Rev. B, Condens. Matter, vol. 65, no. 24, p. 245110, 2002.
    [4.19] K. Choi, H. N. Alshareef, H. C. Wen, H. Harris, H. Luan, Y. Senzaki, P. Lysaght, P. Majhi; and B. H. Lee, “Effective work function modification of atomic-layerdeposited- TaN film by capping layer,” Appl. Phys. Lett., vol. 89, no. 3, p. 032113, 2006.
    [4.20] M. Xueli, Y. Hong, W. Wenwu, Y. Huaxiang, Z. Huilong, Z. Chao, C. Dapeng, and Y. Tianchun, “An effective work-function tuning method of nMOSCAP with high-k/metal gate by TiN/TaN double-layer stack thickness,” J. Semicond., vol. 35, no. 9, p. 096001, 2014.
    [4.21] K. Choi, H. C. Wen, H. Alshareef, R. Harris, P. Lysaght, H. Luan, P. Majhi, and B. H. Lee, “The effect of metal thickness, overlayer and high-k surface treatment on the effective work function of metal electrode,” in Proc. 35th Eur. Solid-State Device Res. Conf. (ESSDERC), Grenoble, France, 2005, pp. 101–104.
    [4.22] L. Zheng, C. Lin, and T.-P. Ma, “Current–voltage characteristic of asymmetric ferroelectric capacitors,” J. Phys. D, Appl. Phys., vol. 29, no. 2, pp. 457–461, 1996.
    [4.23] W. Hamouda, A. Pancotti, C. Lubin, L. Tortech, C. Richter, T. Mikolajick, U. Schroeder, N. Barrett, “Physical chemistry of the TiN/Hf0.5Zr0.5O2 interface,” J. Appl. Phys., vol. 127, no. 6, p. 064105, 2020.
    [4.24] K.-Y. Chen, P.-H. Chen, and Y.-H. Wu, “Excellent reliability of ferroelectric HfZrOx free from wake-up and fatigue effects by NH3 plasma treatment,” in Proc. Symp. VLSI Circuits, Kyoto, Japan, 2017, pp. T84–T85.
    [4.25] Y. Lee, Y. Goh, J. Hwang, D. Das, and S. Jeon, “The influence of top and bottom metal electrodes on ferroelectricity of Hafnia,” IEEE Trans. Electron Devices, vol. 68, no. 2, pp. 523–528, 2021.
    [4.26] R. Cao, Y. Wang, S. Zhao, Y. Yang, X. Zhao, W. Wang, X. Zhang, H. Lv, Qi. Liu, and M. Liu, “Effects of capping electrode on ferroelectric properties of Hf0.5Zr0.5O2 thin films,” IEEE Electron Device Lett., vol. 39, no. 8, pp. 1207–1210, 2018.
    [4.27] X. Cheng, C. Zhou, B. Lin, Z. Yang, S. Chen, K. H. L. Zhang, and Z. Chen, “Leakage mechanism in ferroelectric Hf0.5Zr0.5O2 epitaxial thin films,” Appl. Mater. Today, vol. 32, p. 101804, 2023.
    [4.28] F. Piallat, R. Gassilloud, P. Caubet, and C. Vallée, “Investigation of TiN thin film oxidation depending on the substrate temperature at vacuum break,” J. Vac. Sci. Technol. A, Vac., Surf., Films, vol. 34, no. 5, pp. 1–7, 2016.
    [4.29] E. Yu, X. Lyu, M. Si, P. D. Ye, and K. Roy, “Interfacial layer engineering in sub-5-nm HZO: Enabling low-temperature process, low-voltage operation, and high robustness,” IEEE Trans. Electron Devices, vol. 70, no. 6, pp. 2962–2969, 2023.
    [4.30] S. Li, D. Zhou, Z. Shi, M. Hoffmann, T. Mikolajick, and U. Schroeder, “Involvement of unsaturated switching in the endurance cycling of Si-doped HfO2 ferroelectric thin films,” Adv. Electron. Mater., vol. 6, no. 8, p. 2000264, 2020.
    [4.31] Z. Fang, H. C. Aspinall, R. Odedra, and R. J. Potter, “Atomic layer deposition of TaN and Ta3N5 using pentakis(dimethylamino)tantalum and either ammonia or monomethylhydrazine,” J. Cryst. Growth, vol. 331, no. 1, pp. 33–39, 2011.
    [4.32] S. Rowtu, P. Meihar, A. Pandey, M. H. Ali, S. Lashkare, and U. Ganguly, “Interlayer-engineered local epitaxial templating induced enhancement in polarization (2Pr > 70 μC/cm2) in Hf0.5Zr0.5O2 thin films,” IEEE Trans. Electron Devices, vol. 70, no. 7, pp. 3536–3541, 2023.
    [4.33] R. Degraeve, B. Kaczer, and G. Groeseneken, “Degradation and breakdown in thin oxide layers: Mechanisms, models and reliability prediction,” Microelectron. Rel., vol. 39, no. 10, pp. 1445–1460, 1999.
    [4.34] Y. K. Chang, P. J. Liao, S. H. Yeong, Y. M. Lin, J. H. Lee, W. Tsai, P. C. McIntyre, and C. T. Lin, “The field-dependence endurance model and its mutual effect in Hf-based ferroelectrics,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Dallas, TX, USA, 2022, pp. 3A.1-1–3A.1-5.
    [4.35] T. Gong, J. Li, H. Yu, Y. Xu, P. Jiang, Y. Wang, P. Yuan, Y. Wang, Y. Chen, Y. Ding, Y. Yang, Y. Wang, B. Chen, and Q. Luo, “Observation and characterization of recoverable fatigue process under low-electric field (<1.8MV/cm) in HfZrO ferroelectric film,” IEEE Electron Device Lett., vol. 42, no. 9, pp. 1288–1290, 2021.
    [4.36] K. Toprasertpong, K. Tahara, Y. Hikosaka, K. Nakamura, H. Saito, M. Takenaka, and S. Takagi, “Low operating voltage, improved breakdown tolerance, and high endurance in Hf0.5Zr0.5O2 ferroelectric capacitors achieved by thickness scaling down to 4 nm for embedded ferroelectric memory,” ACS Appl. Mater. Interface, vol. 14, no. 45, pp. 51137–51148, 2022.
    [4.37] P. Jiang, Y. Yang, W. Wei, T. Gong, Y. Wang, Y. Chen, Y. Ding, S. Lv, B. Wang, M. Chen, Y. Wang, and Q. Luo, “Stress effects of interconnecting metals on backend- of-line compatible Hf0.5Zr0.5O2 ferroelectric capacitors,” IEEE Electron Device Lett., vol. 44, no. 4, pp. 602–605, 2023.
    Chapter 5
    [5.1] K. Ni, J. Smith, H. Ye, B. Grisafe, G. B. Rayner, A. Kumkmel, and S. Datta, “A Novel Ferroelectric Superlattice Based Multi-Level Cell Non-Volatile Memory,” in IEDM Tech. Dig., San Francisco, CA, USA, 2019, pp. 28.8.1-28.8.4.
    [5.2] H. K. Peng, T. C. Lai, C. Kao, C. M. Liu, P. J. Wu, and Y. H. Wu, “Improved Reliability for Back-End-of-Line Compatible Ferroelectric Capacitor With 3 Bits/Cell Storage Capability by Interface Engineering and Post Deposition Annealing,” IEEE Electron Device Lett., vol. 43, no. 12, pp. 2180-2183, 2022.
    [5.3] Y. F. Chen, C. W. Hu, Y. C. Kao, C. Y. Kuo, P. J. Wu, and Y. H. Wu,“Wake-Up Free Ferroelectric Capacitor With Quadruple-Level Storage by Inserting ZrO2 Interlayer and Bottom Layer in HfZrOx,” IEEE Electron Device Lett., vol. 44, no. 3, pp. 400-403, 2023.
    [5.4] S. Slesazeck, T. Ravsher, V. Havel, E. T. Breyer, H. Mulaosmanovic, and T. Mikolajick,“A 2TnC ferroelectric memory gain cell suitable for compute-in-memory and neuromorphic application,” in IEDM Tech. Dig., San Francisco, CA, USA, 2019, pp. 38.6.1-38.6.4.
    [5.5] H. K. Peng, Y. K. Huang, C. P. Chou, and Y. H. Wu, “Recognizing Spatiotemporal Features by a Neuromorphic Network with Highly Reliable Ferroelectric Capacitors on Epitaxial GeSn Film,” ACS Appl. Mater. Interface, vol. 13, no. 22, pp. 26630–26638, 2021.
    [5.6] Z. Zhao, Y. R. Chen, J. F. Wang, Y. W. Chen, J. R. Zou, Y. Lin, Y. Xing, C. W. Liu, and C. Hu, “Engineering Hf0.5Zr0.5O2 Ferroelectric/Anti- Ferroelectric Phases With Oxygen Vacancy and Interface Energy Achieving High Remanent Polarization and Dielectric Constants,” IEEE Electron Device Lett., vol. 43, no. 4, pp. 553-556, 2022.
    [5.7] T. Onaya, T. Nabatame, N. Sawamoto, A. Ohi, N. Ikeda, T. Nagata, and A. Ogura, “Characterization of fatigue and its recovery behavior in ferroelectric HfZrO,” Appl. Phys. Lett., vol. 7, no. 6, p. 061107, 2019.
    [5.8] T. Ali, P. Polakowski, K. Kühnel, M. Czernohorsky, T. Kämpfe, M. Rudolph, B. Pätzold, D. Lehninger, F. Müller, R. Olivo, M. Lederer, R. Hoffmann, P. Steinke, K. Zimmermann, U. Mühle, K. Seidel, and J. Müller, “A Multilevel FeFET Memory Device based on Laminated HSO and HZO Ferroelectric Layers for High-Density Storage,” in IEDM Tech. Dig., San Francisco, CA, USA, 2019, pp. 28.7.1-28.7.4.
    [5.9] J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto, F. Sugaya, M. Materano, T. Ali, M. Lederer, K. Kuehnel, K. Seidel, U. Schroder, T. Mikolajick, M. Tsukamoto, and T. Umebayashi, “High-Endurance and Low-Voltage operation of 1T1C FeRAM Arrays for Nonvolatile Memory Application,” in IEEE International Memory Workshop (IMW), Dresden, Germany, 2021, pp. 1-3.
    [5.10] J. Okuno, T. Kunihiro, K. Konishi, M. Materano, T. Ali, K. Kuehnel, K. Seidel, T. Mikolajick, U. Schroeder, M. Tsukamoto, and T. Umebayashi, “1T1C FeRAM Memory Array Based on Ferroelectric HZO With Capacitor Under Bitline,” Journal of the Electron Devices Society, vol. 10, pp. 29-34, 2022
    [5.11] K. Tahara, K. Toprasertpong, Y. Hikosaka, K. Nakamura, H. Saito, M. Takenaka, and S. Takagi, “Strategy Toward HZO BEOL-FeRAM with Low-Voltage Operation (≤ 1.2 V), Low Process Temperature, and High Endurance by Thickness Scaling,” in Proc. IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits), Kyoto, Japan, 2021, pp. 1-2.
    [5.12] K. Toprasertpong, K. Tahara, Y. Hikosaka, K. Nakamura, H. Saito, M. Takenaka, and S. Takagi, “Low Operating Voltage, Improved Breakdown Tolerance, and High Endurance in Hf0.5Zr0.5O2 Ferroelectric Capacitors Achieved by Thickness Scaling Down to 4 nm for Embedded Ferroelectric Memory,” ACS Appl. Mater. Interface, vol. 14, no. 45, pp. 51137–51148, 2022.
    [5.13] N. Ramaswamy, A. Calderoni, J. Zahurak, G. Servalli, A. Chavan, S. Chhajed, M. Balakrishnan, M. Fischer, M. Hollander, D. P. Ettisserry, A. Liao, K. Karda, M. Jerry, M. Mariani, A. Visconti, B. R. Cook, B. D. Cook, D. Mills, A. Torsi, C. Mouli, E. Byers, M. Helm, S. Pawlowski, S. Shiratake, and N. Chandrasekaran, “28nm FDSOI CMOS technology (FEOL and BEOL) thermal stability for 3D sequential integration: Yield and reliability analysis,” in IEDM Tech. Dig., San Francisco, CA, USA, 2023, pp. 1-4.
    [5.14] E. Yu, X. Lyu, M. Si, P. D. Ye, and K. Roy, “Interfacial Layer Engineering in Sub-5-nm HZO: Enabling Low-Temperature Process, Low-Voltage Operation, and High Robustness,” IEEE Trans. Electron Devices, vol. 70, no. 6, pp. 2962-2969, 2023.
    [5.15] Y. D. Lin, H. Y. Lee, Y. T. Tang, P. C. Yeh, H. Y. Yang, P. S. Yeh, C. Y. Wang, J. W. Su, S. H. Li, S. S. Sheu, T. H. Hou, W. C. Lo, M. H. Lee, M. F. Chang, Y. C. King, and C. J. Lin, “3D Scalable, Wake-up Free, and Highly Reliable FRAM Technology with Stress-Engineered HfZrOx,” in IEDM Tech. Dig., San Francisco, CA, USA, 2019, pp. 15.3.1-15.3.4.
    [5.16] K. Ni, W. Chakraborty, J. Smith, B. Grisafe, and S. Datta, “Fundamental Understanding and Control of Device-to-Device Variation in Deeply Scaled Ferroelectric FETs,” in Proc. IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits), Kyoto, Japan, 2019, pp. T40-T41.
    [5.17] Z. Zhao, Y. R. Chen, Y. W. Chen, J. F. Wang, Y. Xing, W. Ji, G. H. Chen, J. Y. Lee, R. Dobhal, and C. W. Liu., “Engineering Hf0.5Zr0.5O2 Ferroelectric Tunnel Junctions With Amorphous WOx Bottom Electrodes Achieving High Remanent Polarization and Record Low-Operating Voltage,” in IEEE Trans. Electron Devices, vol. 70, no. 10, pp. 5022-5027, 2023.
    [5.18] J. Okuno, T. Yonai, T. Kunihiro, Y. Shuto, R. Alcala, M. Lederer, K. Seidel, T. Mikolajick, U. Schroeder, M. Tsukamoto, and T. Umebayashi, “Investigation of Recovery Phenomena in Hf0.5Zr0.5O2-Based 1T1C FeRAM,” Journal of the Electron Devices Society, vol. 11, pp. 43-46, 2023.
    [5.19] K. Y. Hsiang, C. Y. Liao, K. T. Chen, Y. Y. Lin, C. Y. Chueh, C. Chang, Y. J. Yang, S. T. Chang, M. H. Liao, T. H. Hou, C. H. Wu, C. C. Ho, J. P. Chiu, C. S. Chang, and M. H. Lee, “Ferroelectric HfZrO2 With Electrode Engineering and Stimulation Schemes as Symmetric Analog Synaptic Weight Element for Deep Neural Network Training,” IEEE Trans. Electron Devices, vol. 67, no. 10, pp. 4201-4207, 2020.

    [5.20] M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, T. Moon, and C. S. Hwang, “Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature,” Appl. Phys. Lett., vol. 102, no. 24, p. 242905, 2013.
    [5.21] D. Y. Cho, H. S. Jung, L. H. Yu, J. H. Yoon, H. K. Kim, S. Y. Lee, S. H. Jeon, S. Han, J. H. Kim, T. J. Park, B. G. Park, and C. S. Hwang, “The effect of metal thickness, overlayer and high-k surface treatment on the effective work function of metal electrode,” Chem. Mater., vol. 24, no. 18, pp. 3534–3543, 2012.
    [5.22] J. Müller, T. S. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett., vol. 12, no. 8, pp. 4318–4323, 2012.
    [5.23] J. E. Jaffe, R. A. Bachorz, and M. Gutowski, “Low-temperature polymorphs of ZrO2 and HfO2: A density-functional theory study,” Phys. Rev. B, vol. 72, p. 144107, 2005.
    [5.24] Y. Lee, Y. Goh, J. Hwang, D. Das, and S. Jeon, “The Influence of Top and Bottom Metal Electrodes on Ferroelectricity of Hafnia,” IEEE Trans. Electron Devices, vol. 68, no. 2, pp. 523-528, 2021.
    [5.25] H. K. Yoo, J. S. Kim, Z. Zhu, Y. S. Choi, A. Yoon, M. R. MacDonald, X. Lei, T. Y. Lee, D. Lee, S. C. Chae, J. Park, D. Hemker, J. G. Langan, Y. Nishi, and S. J. Hong, “Engineering of ferroelectric switching speed in Si doped HfO2 for high-speed 1T-FERAM application,” in IEDM Tech. Dig., San Francisco, CA, USA, 2017, pp. 19.6.1-19.6.4.
    [5.26] T. Nishimura, L. Xu, S. Shibayama, T. Yajima, S. Migita, and A. Toriumi, “Ferroelectricity of nondoped thin HfO2 films in TiN/HfO2/TiN stacks,” Jpn. J. Appl. Phys., vol. 55, p. 08PB01, 2016.
    [5.27] M. Pešić, F. P. G. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D. Grimley, X. Sang, J. M. LeBeau, S. Slesazeck, U. Schroeder, and T. Mikolajick, “Leakage mechanism in ferroelectric Hf0.5Zr0.5O2 epitaxial thin films,” Adv. Funct. Mater., vol. 26, pp. 4601-4612, 2016.
    [5.28] Y. Jeong, V. Gaddam, Y. Goh, H. Shin, S. Lee, G. Kim, and S. Jeon, “Oxygen Vacancy Control as a Strategy to Enhance Imprinting Effect in Hafnia Ferroelectric Devices,” IEEE Trans. Electron Devices, vol. 70, no. 1, pp. 354-359, 2023.
    [5.29] H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, T. Moon, K. D. Kim, S. D. Hyuna, and C. S. Hwang, “Interfacial layer engineering in sub-5-nm HZO: Enabling low-temperature process, low-voltage operation, and high robustness,” Nanoscale, vol. 3, p. 1383, 2016.
    [5.30] Y. K. Liang, J. S. Wu, C. Y. Teng, H. L. Ko, Q. H. Luc, C. J. Su, E. Y. Chang, and C. H. Lin,“Demonstration of Highly Robust 5 nm Hf0.5Zr0.5O₂ Ultra-Thin Ferroelectric Capacitor by Improving Interface Quality,” IEEE Electron Device Lett., vol. 42, no. 9, pp. 1299-1302, 2021.
    [5.31] Y. K. Chang, P. J. Liao, S. H. Yeong, Y. M. Lin, J. H. Lee, W. Tsai, P. C. McIntyre, and C. T. Lin, “The Field-dependence Endurance Model and Its Mutual Effect in Hf-based Ferroelectrics,” IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 2022, pp. 3A.1-1-3A.1-5.
    [5.32] P. J. Liao, Y. K. Chang, Y. H. Lee, Y. M. Lin, S. H. Yeong, R. L. Hwang, V. Hou, C. H. Nien, R. Lu, and C. T. Lin,“Characterization of Fatigue and Its Recovery Behavior in Ferroelectric HfZrO,” in Proc. IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits), Kyoto, Japan, 2021, pp. 1-2.
    [5.33] S. Li, D. Zhou, Z. Shi, M. Hoffmann, T. Mikolajick, and U. Schroeder, “Involvement of Unsaturated Switching in the Endurance Cycling of Si-doped HfO2 Ferroelectric Thin Films,” Adv. Electron. Mater, vol. 6, p. 2000264, 2020.
    [5.34] T. Gong, J. Li, H. Yu, Y. Xu, P. Jiang, Y. Wang, P. Yuan, Y. Wang, Y. Chen, Y. Ding, Y. Yang, Y. Wang, B. Chen, and Q. Luo, “Observation and Characterization of Recoverable Fatigue Process Under Low-Electric Field (<1.8MV/cm) in HfZrO Ferroelectric Film,” IEEE Electron Device Lett., vol. 42, no. 9, pp. 1288-1290, 2021.
    [5.35] Y. Xu, Y. Yang, S. Zhao, T. Gong, P. Jiang, Y. Wang, P. Yuan, Z. Dang, Y. Chen, S. Lv, Y. Ding, Y. Wang, J. Bi, Q. Luo, and M. Liu, “Improved Multi-bit Storage Reliablity by Design of Ferroelectric Modulated Anti-ferroelectric Memory,” in IEDM Tech. Dig., San Francisco, CA, USA, 2021, pp. 6.2.1-6.2.4

    QR CODE