研究生: |
卜尼亞 Sabyasachi Bhunia |
---|---|
論文名稱: |
Discovery of New Carbocyclizations Involving Activation of C–C Multiple Bonds by Electrophilic Noble Metals |
指導教授: |
劉瑞雄
Liu, Rai-Shung |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 533 |
中文關鍵詞: | 金 、鉑 、催化 |
外文關鍵詞: | gold, platinum, catalyst |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文共分成四個章節,主要是探討利用過渡金屬金和鉑催化不同的有機小分子
化合物。利用此類親炔類的過渡金屬催化,將非環類的基質經由特殊的化學選擇
性合成出環碳化合物以及雜環化合物。
第一章節我們發表利用AuCl3 將6-取代-順式-4,6-雙烯-1-炔-3-醇類化合物經由
6-exo-dig 形成烯丙基羰陽離子,接著進行片吶醇重排反應生成含醛類的環戊烯
基的架構。此類的環化異構化反應不僅提供了具化學選擇性的合成各種醛類的環
戊烯基衍生物,也發展出一個嶄新的合成路徑。而最後也利用了具掌性的醛類基
質環化進行探討。
第二章節利用鉑(II)金屬錯合物催化2-炔類-1 羰基苯與丙烯基矽烷經由其氧炔類
官能基和2-取代丙烯基矽烷進行新形式一鍋化烯丙基化以及環化反應。此反應經
由一連串的骨牌式反應包含了羰基的烯丙基化反應,炔類的烷氧基化以及新型式
的不飽和-氧正離子環化反應。
第三章節是我們發表了利用金金屬錯合物催化烯丙基化以及烯炔類的環化反應
生成1,3 取代的芳香環化合物。利用PPh3AuCl/AgOTf(5/3 mol %)催化炔醛類分
子與2-取代烯丙基矽烷生成1,3 取代的芳香環化合物。此類反應經由醛類的烯丙
基化接著進行烯炔類的環化異構化反應而生成,此兩步反應中催化劑PPh3AuOTf
都扮演著重要的角色。
第四章節我們以金(I)金屬錯合物催化不飽和丙二烯-乙縮醛官能基,合成具立體
選擇性的雙環[3.2.1]辛烷-6-烯-2-酮類化合物。此類的環化反應其反應機構是經由
sp3 混成的碳氫鍵經由1,3 加成至乙烯基類甲烯片段上進行反應。
This dissertation describes development of some new catalytic systems involving gold
and platinum salts. The use of these soft alkynophilic metals enables mild,
chemoselective and efficient transformations of a variety of readily available acyclic
substrates to a wide range of synthetically useful carbocyclic and heterocyclic
products. For better understanding the thesis is divided into four chapters.
The first chapter describes a novel AuCl3-catalyzed cyclization of 6-substituted
cis-4,6-dien-1-yn-3-ols which proceeds via a 6-exo-dig pathway to give allyl cations,
which subsequently undergoes a pinacol rearrangement to produce cyclopentenyl
aldehyde core. This cycloisomerization of enynes via the intermediacy of allyl cation
not only offered a chemoselective method for the preparation of cyclopentenyl
aldehyde derivative but also opens up unprecedented reaction routes. Using chiral
alcohol substrates, such cyclizations proceed with reasonable chirality transfer.
The second chapter deals with a new one-pot Pt(II)-catalyzed synthesis of
9-oxabicyclo[3.3.1]nona-2,6-dienes from readily available
2-alkynyl-1-carbonylbenzenes and allylsilanes through tandem allylation/annulation
of the oxo-alkyne functionalities with 2-substituted allylsilanes. This reaction
sequence is proposed to proceed through three domino reactions including allylation
of the carbonyl group, hydroalkoxylation of the alkyne, and a new ene-oxonium
annulation.
The third chapter describes the gold-catalyzed synthesis of 1,3-disubstituted aromatic
rings through tandem allylation/enyne cyclization reaction. Treatment of alkynals
with 2-substituted allylsilanes and PPh3AuCl/AgOTf (5/3 mol %) catalyst leads to the
formation of 1,3-disubstituted benzenes efficiently. This reaction sequence comprises
an initial allylation of aldehyde, followed by cycloisomerization of enynes;
PPh3AuOTf is active in both steps.
The last chapter discusses a stereoselective synthesis of bicyclo[3.2.1]oct-6-en-2-ones
through Au(I)-catalyzed cycloisomerization of an allenene-acetal functionality. This
cyclization is mechanistically significant because it involves an unprecedented
1,3-addition of a sp3-hybridized C–H bond to vinylcarbenoid moiety.
(1) Anastas, P. T.; Kirchhoff, M. M.; Williamson, T. C. Appl. Catal. A: Gen. 2001,221, 3.
(2) Liu, S.; Xiao, J. J. Mol. Catal. A: Chem. 2007, 270, 1.
(3) For reviews for gold and platinum catalyzed enyne cycloisomerization, see: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Bruneau, C. Angew. Chem. Int. Ed. Engl. 2005, 44, 2328. (c) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. Engl. 2006, 45, 200. (d) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (e) Michelet, V.; Toullec, P. Y.; Genêt, J.-P. Angew. Chem.. Int. Rd. Engl. 2008, 47, 4268. (f) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (g) Lee, S. I.; Chatani, N. C. Chem. Commum. 2009, 371.
(4) For reviews, see: (a) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. (b) Trost, B. M.; Krische, M. J. Synlett. 1998, 1. (c) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215. (d) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (e) Trost, B. M. Chem. Eur. J. 1998, 4, 2405. (f) Ojima, I.; Tzamarioudaki, M.; Li, Z. Y.; Donovan, R. J. Chem. Rev. 1996, 96, 635.
(5) For reviews, see: (a) Templeton, J. L. Adv. Organomet. Chem. 1989, 29, 1. (b) Baker, P. B. Adv. Organomet. Chem. 1996, 40, 45; for an Os complex with an η4-alkyne ligand as an exception, see: (c) Carbo, J. J.; Crochet, P.; Esteruelas, M. A.; Jean, Y.; Lledos, A.; Lopez, A. M.; Onate, E. Organometallics. 2002, 21, 305.
(6) Greaves, E. O.; Lock, J. L.; Maitlis, P. M. Can. J. Chem. 1968, 46, 3879.
(7) (a) Pyykkö, P.; Desclaux, J.-P. Acc. Chem. Res. 1979, 12, 276. (b) Pyykkö, P. Science. 2000, 290, 64. (c) Pyykkö, P. Angew. Chem. Int. Ed. 2002, 41, 3573. (d) Gorin, D. J.; Toste, F. D. Nature, 2007, 446, 395.
(8) Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals; an Introduction to Modern Structural Chemistry, 3rd edn., Cornell University Press: Ithaca, N. Y., 1960.
(9) (a) Chisholm, M. H.; Clark. H. C. Acc. Chem. Res. 1973, 6, 202. (b) Mezailles, N.; Ricard, L.; Mathey, F.; Floch, P. L. Eur. J. Inorg. Chem. 1999, 2233. (c) Willner, H.; Schaebs, J.; Hwang, G.; Mistry, F.; Jones, R.; Trotter, J.; Aubke, F. J. Am. Chem. Soc. 1992, 114, 8972.
(10) For selected examples, see: (a) Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781. (b) Trost, B. M.; Lautens, M. Tetrahedron Lett. 1985, 26, 4887. (c) Trost, B. M. Acc. Chem. Res. 1990, 23, 34. (d) Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1988, 110, 1636. (e) Trost, B. M.; Lautens, M.; Chan, C.; Jebaratnam, D. J.; Mueller, T. J. Am. Chem. Soc. 1991, 113, 636. (f) Trost, B. M.; Pedregal, C. J. Am. Chem. Soc. 1992, 114, 7292. (g) Trost, B. M.; Tanoury, G. J.; Lautens, M.; Chan, C.; MacPherson, D. T. J. Am. Chem. Soc. 1994, 116, 4255. (h) Trost, B. M.; Romero, D. L.; Rise, F. J. Am. Chem. Soc. 1994, 116, 4268.
(11) Chatani, N.; Morimoto, T.; Muto, T.; Murai, S. J. Am. Chem. Soc. 1994, 116, 6049.
(12) Reviews: (a) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (b) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431.
(13) (a) Méndez, M.; Muñoz, M. P.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511. (b) Nevado, C. D.; Cárdenas, J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627. (c) Muñoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics. 2005, 24, 1293.
(14) Oi, S.; Tsukamoto, I.; Miyano, S.; Inoue,;Y. Organometallics. 2001, 20, 3704.
(15) (a) Fürstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. (b) Fürstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863. (c) Blum, J.; Berr-Kraft, H.; Badrieh, Y. J. Org. Chem. 1995, 60, 5567.
(16) N-Oberhuber, C.; Muñoz, M. P.; Buñuel, E.; Nevado, C.; Cárdenas, D. J.; Echavarren. A. M. Angew. Chem. 2004, 116, 2456; Angew. Chem. Int. Ed. 2004, 43, 2402.
(17) (a) Hoffmann, R. Angew. Chem. 1982, 94, 725; Angew. Chem. Int. Ed. Engl. 1982, 21, 711. (b) Hall, K. P.; Mingos, D. M. P. Prog. Inorg. Chem. 1984, 32, 237. (c) Schmidbaur, H. Chem. Soc. Rev. 1995, 24, 391.
(18) (a) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (b) Mendez, M.; Muñoz, M. P.; Echavarren. A. M. J. Am. Chem. Soc. 2000, 122, 11549.
(19) (a) Fürstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863. (b) Fürstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. (c) Fürstner, A.; Szillat, H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305.
(20) (a) Oh, C. H.; Bang, S. Y.; Rhim C. Y. Bull. Korean Chem. Soc. 2003, 24, 887 – 888. (b) For the use of platinum catalysts in ionic liquids, see Miyanohana, Y.; Inoue, H.; Chatani, N. J. Org. Chem. 2004, 69, 8541. (c) Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Cárdenas, D. J.; Bunuel, E.; Nevado, C.; Echavarren, A. M. Angew. Chem. 2005, 117, 6302; Angew. Chem. Int. Ed. 2005, 44, 6146. (d) Soriano, E.; Ballesteros, P.; Marco-Contelles, J. J. Org. Chem. 2004, 69, 8018. (e) Soriano, E.; Marco-Contelles, J. J. Org. Chem. 2005, 70, 9345. (f) Soriano, E.; Marco-Contelles, J. Chem. Eur. J. 2005, 11, 521. (g) Soriano, E.; Ballesteros, P.; Marco-Contelles, J. Organometallics. 2005, 24, 3172. (h) Shibata, T.; Ueno, Y.; Kanda. K. Synlett. 2006, 411. (i) Lee, S.; Kim, I. S. M.; Kim, S. Y.; Chung, Y. K. Synlett. 2006, 2256. (j) Bajracharya, G. B.; Nakamura, I.; Yamamoto, Y. J. Org. Chem. 2005, 70, 892.
(21) (a) Kataoka, Y.; Matsumoto, O.; Ohashi, M.; Yamagata, T.; Tani, K. Chem. Lett. 1994, 1283. (b) Fürstner, A.; Davies, P.W. J. Am. Chem. Soc. 2005, 127, 15024. (c) Fürstner, A.; Davies, P. W.; Gress, T. J. Am. Chem. Soc. 2005, 127, 8244.
(22) Alkoxy- and hydroxycyclization: (a) Muñoz, M. P.; Méndez, M.; Nevado, C.; Cárdenas, D. J.; Echavarren. A. M. Synthesis, 2003, 2898. (b) Nieto-Oberhuber, C.; Muñoz, M. P.; López, S.; Jiménez-Núñez, E.; Nevado, C.; Herrero-Gomez, E.; Raducan, M.; Echavarren. A. M. Chem. Eur. J. 2006, 12, 1677. (c) Asymmetric alkoxycyclization: Charruault, L.; Michelet, V.; Taras, R.; Gladiali, S.; Genet, J.-P. Chem. Commun. 2004, 850. (d) Pd: Charruault, L.; Michelet, V.; Genêt, J.-P. Tetrahedron Lett. 2002, 43, 4757.
(23) (a) Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178. (b) Mezailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133.
(24) Chatani, N.; Kataoka, K.; Murai, S.; Furukawa, N.; Seki, Y. J. Am. Chem. Soc. 1998, 120, 9104.
(25) Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Jiménez- Núñez, E.; Buñuel, E.; Cárdenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2006, 12, 1694.
(26) López, S.; Herrero-Gomez, E.; Perez-Galan, P.; Nieto- Oberhuber, C.; Echavarren, A. M. Angew. Chem. 2006, 118, 6175; Angew. Chem. Int. Ed. 2006, 45, 6029.
(27) (a) Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 8654. (b) Harrak, Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mouries, V.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656. (c) Nevado, C.; Ferrer, C.; Echavarren, A. M. Org. Lett. 2004, 6, 3191.
(28) Trost, B. M.; Doherty, G. A. J. Am. Chem. Soc. 2000, 122, 3801.
(29) Markham, J. P.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 9708.
(30) Jiménez- Núñez, E. J.; Claverie, C. K.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. 2006, 118, 5578; Angew. Chem. Int. Ed. 2006, 45, 5452.
(31) (a) Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10 858. (b) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2004, 126, 16066.
(32) (a) Sun, J.; Conley, M. P.; Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2006, 128, 9705. (b) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 11 806.
(33) Gagosz, F. Org. Lett. 2005, 7, 4129.
(34) (a) Lin, M.-Y.; Das, A.; Liu, R.-S. J. Am. Chem. Soc. 2006, 128, 9340. (b) Tang, J.-M.; Bhunia, S.; Sohel, S. Md. A.; Lin, M.-Y.; Liao, H.-Y.; Datta, S.; Das, A.; Liu, R.-S. J. Am. Chem. Soc. 2007, 129, 15677.
(35) The asymmetric syntheses in pinacol rearrangements deal exclusively with diastereomeric courses rather than the enantiospecificity in this study; see selected examples: (a) Overman, L. E.; Pennington, L. D. J. Org. Chem. 2003, 68, 7143 (review). (b) Trost, B. M.; Brandi, A. J. Am. Chem. Soc. 1984, 106, 5041. (c) Hanaki, N.; Link, J. T.; MacMillan, D. W. C.; Overman, L. E.; Trankle, W. G.; Wurster, J. A. Org. Lett. 2000, 2, 223. (d) Youn, J.-H.; Lee, J.; Cha, J. K. Org. Lett. 2001, 3, 2935. (e) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134.
(36) For metal-catalyzed cycloisomerization of enynes involving pinacol rearrangement, see: (a) Kirsch, S. F.; Binder, J. T.; Crone, B.; Duschek, A.; Haug, T. T.; Liébert, C.; Menz, H. Angew. Chem., Int. Ed. 2007, 46, 2310. (b) Huang, X.; Zhang, L. J. Am. Chem. Soc. 2007, 129, 6398.
(37) The asymmetric syntheses in pinacol rearrangements deal exclusively with diastereomeric courses rather than the enantiospecificity in this study; see selected examples: (a) Overman, L. E.; Pennington, L. D. J. Org. Chem. 2003, 68, 7143 (review). (b) Trost, B. M.; Brandi, A. J. Am. Chem. Soc. 1984, 106, 5041. (c) Hanaki, N.; Link, J. T.; MacMillan, D. W. C.; Overman, L. E.; Trankle, W. G.; Wurster, J. A. Org. Lett. 2000, 2, 223. (d) Youn, J.-H.; Lee, J.; Cha, J. K. Org. Lett. 2001, 3, 2935. (e) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134.
(38) For metal-catalyzed cycloisomerization of enynes involving pinacol rearrangement, see: (a) Kirsch, S. F.; Binder, J. T.; Crone, B.; Duschek, A.; Haug, T. T.; Liébert, C.; Menz, H. Angew. Chem., Int. Ed. 2007, 46, 2310. (b) Huang, X.; Zhang, L. J. Am. Chem. Soc. 2007, 129, 6398.
(39) (a) Hoffman, R. W. Chem. Rev. 1989, 1841. (b) Broeker, J. L.; Hoffman, R. W.; Houk, K. N. J. Am. Chem. Soc. 1991, 113, 5006. (c) Allinger, N. L.; Hirsh, J. A.; Miller, M. A.; Tyminski, I. J. J. Am. Chem. Soc. 1968, 90, 5773.
(40) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(41) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
(42) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (b) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(43) Frisch, M. J. et al. Gaussian 03, revision A1; Gaussian, Inc.: Pittsburgh, PA, 2003.
1. (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Trost, B. M. Angew. Chem. 1995, 107, 285; Angew. Chem. Int. Ed. Engl. 1995, 34, 259. (c) Trost, B. M. Science. 1991, 254, 1471.
2. (a) Anastas, P.; Warner, J. C. in Green Chemistry, Theory and Practice, Oxford University Press, Oxford, 1998. (b) Anastas, P.T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686. (c) Anastas, P. T.; Zimmerman, J. B.; Environ. Sci. Technol. 2003, 37, 94A. (d) Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. Science. 2002, 297, 807. (e) Trost, B. M.; Toste, D. F.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067.
3. (a) Janssen, E. M.W.; Folmer, J. C. W.; Wiegers, G. A. J. Less-Common Met. 1974, 38, 71 – 76. (b) Vogler, A.; Kunkely, H.; Coord. Chem. Rev. 2001, 219–221, 489 – 507. (c) Hashmi, A. S. K.; Blanco, M. C.; Fischer, D.; Bats, J. W. Eur. J. Org. Chem. 2006, 1387 – 1389.
4. (a) Iwasawa, N.; Shido, M.; Kusama, H. J. Am. Chem. Soc. 2001, 123, 5814 – 5815. (b) Kusama, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 11592 – 11593. (c) Kusama, H.; Funami, H.; Takaya, J.; Iwasawa, N. Org. Lett. 2004, 6, 605 – 608. (d) Takaya, J.; Kusama, H.; Iwasawa, N.; Chem. Lett. 2004, 33, 16–17. (e) Kusama, H.; Funami, H.; Shido, M.; Hara, Y.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2005, 127, 2709 – 2716. (f) Kusama, H.; Miyashita, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 289 – 292. (g) Kusama, H.; Suzuki, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 895 – 897. (h) Kusama, H.; Funami, H.; Iwasawa, N. Synthesis. 2007, 2014 – 2024.
5. (a) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650 – 12651; (b) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921 – 10925. (c) Asao, N.; Kasahara, T.; Yamamoto, Y. Angew. Chem. 2003, 115, 3628 – 3630; Angew. Chem. Int. Ed. 2003, 42, 3504 – 3506. (d) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 7458 – 7459. (e) Asao, N.; Sato, K.; Menggenbateer.; Yamamoto, Y. J. Org. Chem. 2005, 70, 3682 – 3685. (f) Asao, N.; Aikawa, H. J. Org. Chem. 2006, 71, 5249 – 5253. (g) Asao, N.; Sato, K. Org. Lett. 2006, 8, 5361 – 5363. (h) Shin, S.; Gupta, A. K.; Rhim, C. Y.; Oh, C. H. Chem. Commun. 2005, 4429 – 4431. (i) Kim, N.; Kim, Y.; Park, W.; Sung, D.; Gupta, A. K.; Oh, C. H. Org. Lett. 2005, 7, 5289 – 5291. (j) Gupta, A. K.; Rhim, C. Y.; Oh, C. H.; Mane, R. S.; Han, S.-H. Green Chem. 2006, 8, 25 – 28. (k) Dyker, G.; Hildebrandt, D. J. Org. Chem. 2005, 70, 6093 – 6096. (l) Hildebrandt, D.; Hggenberg, W.; Kanthak, M.; PlIger, T.; MHller, I. M.; Dyker, G. Chem. Commun. 2006, 2260 – 2261. (m) Oh, C. H.; Ryu, J. H.; Lee, H. I. Synlett. 2007, 2337 – 2342. (n) Zhu, J.; Germain, A. R.; Porco, J. A. ; Jr. Angew. Chem. 2004, 116, 1259 – 1263; Angew. Chem. Int. Ed. 2004, 43, 1239 – 1243. (o) Beeler, A. B.; Su, S.; Singleton, C. A.; Porco, J. A.; Jr. J. Am. Chem. Soc. 2007, 129, 1413 – 1419.
6. (a) Patil, N. T.; Wu, H.; Yamamoto, Y. J. Org. Chem. 2005, 70, 4531 – 4534. (b) Asao, N.; Yudha, S.; Nogami, T.; Yamamoto, Y. Angew. Chem. 2005, 117, 5662 – 5664; Angew. Chem. Int. Ed. 2005, 44, 5526 – 5528. (c) Yao, X.; Li, C.-J. Org. Lett. 2006, 8, 1953 – 1955. (d) Yanada, R.; Obika, S.; Kono, H.; Takemoto, Y. Angew. Chem. 2006, 118, 3906 – 3909; Angew. Chem. Int. Ed. 2006, 45, 3822 – 3825. (e) Zhang, J.; Schmalz, H.-G. Angew. Chem. 2006, 118, 6856 – 6859; Angew. Chem. Int. Ed. 2006, 45, 6704 – 6707. (f) Oh, C. H.; Reddy, R.; Kim, A.; Rhim, C. Y. Tetrahedron Lett. 2006, 47, 5307 – 5310. (g) Liang, Y.; Xie, Y.-X.; Li, J.-H. Synthesis. 2007, 400 – 406.
7. (a) Kusama, H.; Iwasawa, N. Chem. Lett. 2006, 35, 1082 – 1087. (b) Asao, N. Synlett. 2006, 1645 – 1656.
8. Miki, K.; Uemura, S.; Ohe, K. Chem. Lett. 2005, 34, 1068 – 1073.
9. Miura, T.; Murakami, M. Chem. Commun. 2007, 217.
10. Tovar, R.; Swager, T. M. J. Org. Chem. 1999, 64, 6499 – 6504.
11. Numata, A.; Kondo, Y.; Sakamoto, T. Synthesis. 1999, 306 – 311.
12. Huang, Q.; Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002, 67, 3437 – 3444, and references therein.
13. (a) Roesch, K. R.; Larock, R. C. J. Org. Chem. 2002, 67, 86. (b) Dai, G.; Larock, R. C. Org. Lett. 2001, 3, 4035. (c) Huang, Q.; Larock, R. C. J. Org. Chem. 2003, 68, 980 and references therein. (d) Ohtaka, M.; Nakamura, H.; Yamamoto, Y. Tetrahedron Lett. 2004, 45, 7339. (e) The palladium-catalyzed cyclization of related acetals leads to indenol ethers: Nakamura, I.; Gabajracharya, G. B.; Mizushima, Y.; Yamamoto, Y. Angew. Chem. 2002, 114, 4504 – 4507; Angew. Chem. Int. Ed. 2002, 41, 4328 – 4331.
14. (a) Iritani, K.; Matsubara, S.; Utimoto, K. Tetrahedron Lett. 1988, 29, 1799. (b) Arcadi, A.; Cacchi, S.; Marinelli, F. Tetrahedron Lett. 1989, 30, 2581. (c) Cacchi, S.; Fabrizi, G.; Pace, P. J. Org. Chem. 1998, 63, 1001. (d) Kamijo, S.; Yamamoto, Y. J. Org. Chem. 2003, 68, 4764. (e) Ezquerra, J.; Pedregal, C.; Lamas, C. J. Org. Chem. 1996, 61, 5804. (f) Hiroya, K.; Itoh, S.; Sakamoto, T. J. Org. Chem. 2004, 69, 1126 and references therein. (g) Larock, R. C.; Harrison, L. W. J. Am. Chem. Soc. 1984, 106, 4218.
15. (a) Torii, S.; Xu, L. H.; Okumoto, H. Synlett 1992, 515. (b) Lu¨tjens, H.; Scammells, P. J. Synlett 1999, 1079. (c) Hu, Y.; Yang, Z. Org. Lett. 2001, 3, 1387. (d) Houpis, I. N.; Choi, W. B.; Reider, P. J.; Molina, A.; Churchill, H.; Lynch, J.; Volante, R. P. Tetrahedron Lett. 1994, 35, 9355. (e) Nan, Y.; Miao, H.; Yang, Z. Org. Lett. 2000, 2, 297 and references therein.
16. (a) Bellina, F.; Ciucci, D.; Vergamini, P.; Rossi, R. Tetrahedron 2000, 56, 2533 and references therein. (b) Sakamoto, T.; An-naka, M.; Kondo, Y.; Yamanaka, H. Chem. Pharm. Bull. 1986, 34, 2754. (c) Sashida, H.; Kawamukai, A. Synthesis 1999, 1145.
17. G. Dyker, W. Stirner, G. Henkel, M. KJckerling, Tetrahedron Lett. 1999, 40, 7457 – 7458.
18. (a) Dyker, G. An Eldorado for Homogeneous Catalysis in Organic Synthesis Highlights V (Eds.: H.-G. Schmalz, T. Wirth), Wiley- VCH, Weinheim, 2003. (b) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. 2000, 112, 2382 – 2385; Angew. Chem. Int. Ed. 2000, 39, 2285 – 2288. (c) Hashmi, A. S. K.; Frost, T. M.; Bats, J.W. J. Am. Chem. Soc. 2000, 122, 11553 – 11554. (d) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. Org. Lett. 2001, 3, 3769 – 3771. (e) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. Catal. Today. 2002, 72, 19 – 27. (f) Dankwardt, J.W. Tetrahedron Lett. 2001, 42, 5809 – 5812. (g) Hoffmann-RJder, A.; Krause, N. Org. Lett. 2001, 3, 2537 – 2538.
19. (a) Pape, A. R.; Kaliappan, K. P.; Küdig, E. P. Chem. Rev. 2000, 100, 2917 – 2940. (b) Rawson, D. J.; Meyers, A. I. J. Org. Chem. 1991, 56, 2292 – 2294. (c) Meyers, A. I.; Brown, J. D. Tetrahedron Lett. 1987, 28, 5279 – 5282. (d) Meyers, A. I.; Lutomski, K. A.; Laucher, D. Tetrahedron. 1988, 44, 3107 – 3118. (e) Amurrio, D.; Khan, K.; KCndig, E. P. J. Org. Chem. 1996, 61, 2258 – 2259, and references therein. (f) Ahmed, A.; Clayden, J.; Rowley, M. Chem. Commun. 1998, 297 – 298. (g) Tomioka, K.; Shindo, M.; Koga, K. Tetrahedron Lett. 1990, 31, 1739 – 1740. (h) omioka, K.; Inoue, T. I.; Shindo, M.; Koga, K. Tetrahedron Lett. 1990, 31, 6681 – 6684. (i) Shindo, M.; Koga, K.; Asano, Y.; Tomioka, K. Tetrahedron. 1999, 55, 4955 – 4968. (j) Tomioka, K.; Shindo, M.; Koga, K.; J. Am. Chem. Soc. 1989, 111, 8266 – 8268.
20. (a) Danheiser, R. L.; Gould, A. E.; Fernandez, de la Predilla, R.; Helgason, A. L. J. Org. Chem. 1994, 59, 5514-5515. (b) Bradley, A. Z.; Johnson, R. P. J. Am. Chem. Soc. 1997, 119, 9917-9918.
21. Fringuelli, F.; Taticchi, A. The Diels-Alder Reaction-Selected Practical Methods; Wiley: Chichester, 2002.
22. (a) Asao, N.; Shimada, T.; Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 10899-10902. (b) Asao, N.; Yamamoto, Y. Bull. Chem. Soc. Jpn. 2000, 73, 1071-1087 and references therein.
23. Kuznetsov, E.; Shcherbakova, I. V.; Balaban, A. T. AdV. Heterocycl. Chem. 1990, 50, 157-254.
24. Straub, B. F. Chem. Commun. 2004, 1726 – 1728.
25. Kim, N.; Kim, Y.; Park, W.; Sung, D.; Gupta, A. K.; Oh, C. H. Org. Lett. 2005, 7, 5289 – 5291.
26. Kusama, H.; Funami, H.; Takaya, J.; Iwasawa, N. Org. Lett. 2004, 6, 605 – 608.
27. Kusama, H.; Ishida, K.; Funami, H.; Iwasawa, N. Angew. Chem. Int. Ed. 2008, 47, 4903 –4905.
28. (a) Mehta, G.; Muthusamy, S.; Tetrahedron. 2002, 58, 9477 – 9504. (b) Padwa, A. Helv. Chim. Acta. 2005, 88, 1357 – 1374.
29. (a) Lin, C.-C.; Teng, T.-M.; Odedra, A.; Liu, R.-S. J. Am. Chem. Soc. 2007, 129, 3798. (b) Lin, C.-C.; Teng, T.-M.; Tsai, C.-C.; Liao, H.-Y.; Liu, R.-S. J. Am. Chem. Soc., 2008, 130, 16417-16423.
30. Asao, N.; Chan, C.-S.; Takahashi, K.; Yamamoto, Y. Tetrahedron, 2005, 61, 11322.
31. (a) Asao, N.; Nogami, T.; Takahashi, K.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 764–765. (b) Mondal, S.; Nogami, T.; Asao, N.; Yamamoto, Y. J. Org. Chem. 2003, 68, 9496–9498. (c) Patil, N. T.; Yamamoto, Y. J. Org. Chem. 2004, 69, 5139–5142. (d) Barluenga, J.; Vázquez-Villa, H.; Ballesteros, A.; González, J. M. J. Am. Chem. Soc. 2003, 125, 9028–9029. (e) Yue, D.; Cá, N. D.; Larock, R. C. Org. Lett. 2004, 6, 1581–1584.
32. (a) Chabaud, L.; James, P.; Landais, Y. Eur. J. Org. Chem. 2004, 3173. (b) Masse, C. E.; Panek, J. S. Chem. Rev. 1995, 95, 1293. (c) Chemler, S. R.; Roush, W. R. In Modern Carbonyl Chemistry; Otera, J. Ed.; Wiley-VCH: Weinheim, Germany, 2000, Chapter 10, p 403. (d) Denmark, S. E.; Almstead, N. G. In Modern Carbonyl Chemistry, Otera. J. Ed. Wiley-VCH: Weinheim, Germany, 2000, Chapter 11, p 299; (e) Lewis Acids in Organic Synthesis, Yamamoto, H. Ed, Wiley-VCH: Weinheim, Germany, 2000, Vol 1 and 2.
33. (a) Knolker, H. J.; Foitzik, N.; Gabler, C.; Graf, R. Synthesis 1999, 145-151. (b) Knolker, H. J. J. Prakt. Chem. 1997, 339, 304. (c) Danheiser, R. L.; Dixon, B. R.; Gleason, R. W. J. Org. Chem. 1992, 57, 6094. (d) Panek, J. S.; Yang, M. J. Am. Chem. Soc. 1991, 113, 9868.
34. (a) Tinsley, J. M.; Roush, W. R. J. Am. Chem. Soc. 2005, 127, 10818. (b) Angle, S. R.; El-Said, N. A. J. Am. Chem. Soc. 2002, 124, 3608.
35. Angle, S. R.; El-Said, N. A. J. Am. Chem. Soc. 1999, 121, 10211.
36. (a) Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 4723. (b) Wadamoto, M.; Ozasa, N.; Yanagisawa, A.; Yamamoto, H. J. Org. Chem. 2003, 5593. (c) Yanagisawa, A.; Kageyama, H.; Nakatsuka, Y.; Asakawa, K. ; Matsumoto, Y.; Yamamoto, H. Angew. Chem. 1999, 111, 3916.; Angew. Chem. Int. Ed. 1999, 38, 3701. (d) Kruger, J.; Carreira, E. M. J. Am. Chem. Soc. 1998, 120, 837. (e) Obika, S.; Kono, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. J. Org. Chem. 2007, 72, 4462.
37. (a) Chianese, A. R.; Lee, S. J.; Gagne, M. R. Angew. Chem. 2007, 119, 4118.; Angew. Chem. Int. Ed. 2007, 46, 2. (b) Funami, H.; Kusama, H.; Iwasawa, N. Angew. Chem. 2007, 119, 927.; Angew. Chem. Int. Ed. 2007, 46, 909. (c) Cariou, K.; Ronan, B.; Mignani, S.; Fensterbank, L.; Malacria, M. Angew. Chem. 2007, 119, 1913.; Angew. Chem. Int. Ed. 2007, 46, 1881. (d) Li, G.; Huang, X.; Zhang, L. Angew. Chem.. 2007, 120, 352.; Angew. Chem. Int. Ed. 2008, 47, 346. (e) Trillo, B.; Lopez, F.; Gulias, M.; Castedo, L.; Mascarenas,J . Angew. Chem. 2008, 120, 965.; Angew. Chem. Int. Ed. 2008, 47, 951. (f) Smith, S. E.; Sasaki, J. M.; Bergman, R. G.; Mondloch, J. E.; Finke, R. G. J. Am. Chem. Soc. 2008, 130, 1839. (g) Zhang, G.; Catalano, V. J.; Zhang, L. J. Am. Chem. Soc. 2007, 129, 11358. (h) Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2005, 127, 1070.
38. (a) Yao, X.; Li, C.-J. Org. Lett. 2006, 8, 1953. (b) Asao, N.; Nogami, T.; Takahashi, K.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 764.
39. Beeler, A.; Su, S.; Singleton, C. A.; Jr. Proco, J. A. J. Am. Chem. Soc. 2007, 129, 1413.
40. (a) Wünsch, B.; Zott, M.; Höfner, G. Arch. Pharm. 1992, 325, 733. (b) Wünsch, B.; Zott, M.; Höfner, G. Arch. Pharm. 1993, 326, 823. (c) Ketterer, C.; Grimme, S.; Weckert, E.; Wünsch, B. Tetrahedron Asymmetry 2006, 17, 3046.
41. (a) Maurin, C.; Bailly, F.; Cortelle, P. Curr. Med. Chem. 2003, 10, 1795. (b) Dupont, R.; Jeanson, L.; Mouscadet, J.-F.; Cotelle, P. Bioorg. & Med. Chem. Lett. 2001, 11, 3175. (c) Dupont, R.; Cotelle, P. Tetrahedron Lett. 1998, 39, 8457.
42. For the PtCl2/CO catalysis, see (a) Fürstner, A.; Aïssa, C. J. Am. Chem. Soc. 2006, 128, 6306. (b) Fürstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024. (c) Taduri, B. P.; Sohel, S. M. A.; Cheng, H.-M.; Lin, G.-Y.; Liu, R.-S. Chem. Commu. 2007, 2530-2532. (d) Chang, H.-K.; Datta, S.; Das, A.; Liu, R.-S. Angew. Chem. 2007, 119, 4828.; Angew. Chem. Int. Ed. 2007, 46, 4744.
43. Das, A.; Liao, H.-H.; Liu, R.-S. J. Org. Chem. 2007, 72, 9214.
44. (a) X. Yao, C.-J. Li, Org. Lett. 2006, 8, 1953. (b) N. Asao, T. Nogami, K. Takahashi, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 764.
45. A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
46. C. Lee, W. Yang, R. G. Parr, Phys. Rev. 1988, B37, 785.
47. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
48. M. J. Frisch, et al. Gaussian 03, revision A1; Gaussian, Inc.: Pittsburgh, PA, 2003.
(1) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules; University Science Books: Sausalito, California 1999: Second Ed.
(2) For general reviews, see: (a) Ho, T.-L. Topics of Organic synthesis; Wiley Interscience: New York, 1994: p 79. (b) Tietze, L. F. Chem. Rev. 1996, 96, 115. (c) Winkler, J. D. Chem. Rev. 1996, 96, 167. (d) Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137.
(3) (a) T.L. Ho. Tandem Organic Reactions, Wiley, New York, 1992. (b) Nicolaou, K. C.; Yue, E. W.; Oshima, T. in: N. Hall (Ed.), The New Chemistry, Cambridge University Press, Cambridge, 2001, p. 168. (c) Tietze, L. F.; Hautner, F. in: F. Vögtle, J.F. Stoddart, M. Shibasaki (Eds.), Stimulating Concepts in Chemistry, Wiley-VCH, Weinheim, 2000, p. 38; (d) Tietze, L. F.; Beifuss, U. Angew. Chem. 1993.105. 137; Angew. Chem. Int. Ed. Engl. 1993. 32. 131.
(4) Selected reviews, (a) Chabaud, L.; James, P.; Landais, Y. Eur. J. Org. Chem. 2004, 3173. (b) Masse, C. E.; Panek, J. S. Chem. Rev. 1995, 95, 1293. (c) Chemler, S. R.; Roush, W. R. In Modern Carbonyl Chemistry; Otera, J. Ed.; Wiley-VCH: Weinheim, Germany, 2000, Chapter 10, p 403. (d) Denmark, S. E.; Almstead, N. G. In Modern Carbonyl Chemistry, Otera. J. Ed. Wiley-VCH: Weinheim, Germany, 2000, Chapter 11, p 299; (e) Lewis Acids in Organic Synthesis, Yamamoto, H. Ed, Wiley-VCH: Weinheim, Germany, 2000, Vol 1 and 2.
(5) For recent reviews and leading references, see (a) Knolker, H. J.; Foitzik, N.; Gabler, C.; Graf, R. Synthesis 1999, 145-151. (b) Knolker, H. J. J. Prakt. Chem. 1997, 339, 304. (c) Danheiser, R. L.; Dixon, B. R.; Gleason, R. W. J. Org. Chem. 1992, 57, 6094. (d) Panek, J. S.; Yang, M. J. Am. Chem. Soc. 1991, 113, 9868.
(6) Selected examples, see (a) Tinsley, J. M.; Roush, W. R. J. Am. Chem. Soc. 2005, 127, 10818. (b) Angle, S. R.; El-Said, N. A. J. Am. Chem. Soc. 2002, 124, 3608.
(7) Angle, S. R.; El-Said, N. A. J. Am. Chem. Soc. 1999, 121, 10211.
(8) (a) Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 4723. (b) Wadamoto, M.; Ozasa, N.; Yanagisawa, A.; Yamamoto, H. J. Org. Chem. 2003, 5593. (c) Yanagisawa, A.; Kageyama, H.; Nakatsuka, Y.; Asakawa, K.; Matsumoto, Y.; Yamamoto, H. Angew. Chem. 1999, 111, 3916.; Angew. Chem. Int. Ed. 1999, 38, 3701. (d) Kruger, J.; Carreira, E. M. J. Am. Chem. Soc. 1998, 120, 837. (e) Obika, S.; Kono, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. J. Org. Chem. 2007, 72, 4462.
(9) Allylation and crotylation reaction of aldimines by allyltrifluorosilane with cesium fluoride: (a) Kira, M.; Hino, T.; Sakurai, H. Chem. Lett. 1991, 277. Allylation reaction of aromatic N-galactosyl imines by allyltrimethylsilane in the presence of SnCl4: (b) Laschat, S.; Kunz, H. Synlett 1990, 51. (c) Laschat, S.; Kunz, H. J. Org. Chem. 1991, 56, 5883.
(10) For the palladium-catalyzed coupling reactions of organosilicone compounds, see: (a) Hatanaka, Y.; Goda, K.; Hiyama, T. Tetrahedron Lett. 1994, 35, 6511. See also: (b) Horn, K. A. Chem. Rev. 1995, 95, 1317.
(11) Fürstner, A.; Voigtländer, D. Synthesis, 2000, 959-969.
(12) Reviews for catalytic asymmetric allylations: (a) Roush, W. R. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Heathcock, C. H., Eds.; Pergamon Press: Oxford, UK, 1991; Vol. 2, p 1. (b) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207. (c) Bach, T. Angew. Chem., Int. Ed. Engl. 1994, 33, 417. (d) Hoppe, D. In Houben- Weyl: Methods of Organic Chemistry; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Georg Thieme Verlag: Stuttgart, Germany, 1995; Vol. E21, p 1357. (e) Hoveyda, A. H.; Morken, J. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 1262. (f) Cozzi, P. G.; Tagliavini, E.; Umani-Ronchi, A. Gazz. Chim. Ital. 1997, 127, 247. (g) Yanagisawa, A. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Heidelberg, Germany, 1999; Vol. 2, p 965. (h) Denmark, S. E.; Almostead, N. G. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinhein, Germany, 2000; Chapter 10, p 299. (i) Chemler, S. R.; Roush, W. R. In Modern Carbonyl
Chemistry; Otera, J., Ed.; Wiley-VCH: Weinhein, Germany, 2000; Chapter 11, p 403. (j) Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.; Wiley-VCH: Weinheim, Germany, 2000; Vols. 1 and 2.
(13) Notable examples of chiral Lewis acid-catalyzed asymmetric allylations with allylic trimethylsilanes: (a) Furuta, K.; Mouri, M.; Yamamoto, H. Synlett 1991, 561. (b) Ishihara, K.; Mouri, M.; Gao, Q.; Maruyama, T.; Furuta, K.; Yamamoto, H. J. Am. Chem. Soc. 1993, 115, 11490. (c) Aoki, S.; Mikami, K.; Terada, M.; Nakai, T. Tetrahedron 1993, 49, 1783. (d) Gauthier, D. R., Jr.; Carreira E. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2363. See also: (e) Duthaler, R. O.; Hafner, A. Angew. Chem., Int. Ed. Engl. 1997, 36, 43. Notable examples of chiral Lewis base-catalyzed asymmetric allylations with allylic trichlorosilanes: (f) Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel, B. D. J. Org. Chem. 1994, 59, 6161. (g) Iseki, K.; Kuroki, Y.; Takahashi, M.; Kobayashi, Y. Tetrahedron Lett. 1996, 37, 5149. (h) Iseki, K.; Kuroki, Y.; Takahashi, M.; Kishimoto, S.; Kobayashi, Y. Tetrahedron 1997, 53, 3513. (i) Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron Lett. 1998, 39, 2767. (j) Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S. J. Am. Chem. Soc. 1998, 120, 6419. (k) Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron 1999, 55, 977. (l) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2000, 122, 12021. (m) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 123, 9488. (n) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 123, 6199. Catalytic asymmetric Nozaki-Hiyama reactions with chromium catalysts: (o) Bandini, M.; Cozzi, P. G.; Melchiorre, P.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 1999, 38, 3357. (p) Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2000, 38, 2327. Asymmetric allyl-transfer reactions; (q) Nokami, J.; Ohga, M.; Nakamoto, H.; Matsubara, T.; Hussain, I.; Kataoka, K. J. Am. Chem. Soc. 2001, 123, 9168. (r) Loh, T.-P.; Hu, Q.-Y.; Chok, Y.-K.; Tan, K.-T. Tetrahedron Lett. 2001, 42, 9277.
(14) Review for catalytic asymmetric aldol reactions: (a) Gennari, C. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Heathcock, C. H., Eds.; Pergamon Press: Oxford, UK, 1991; Vol. 2, p 629. Reviews for catalytic asymmetric aldol reactions with silyl enol ethers or ketene silyl acetals: (b) Hollis, T. K.; Bosnich, B. J. Am. Chem. Soc. 1995, 117, 4570. (c) Braun, M. In Houben-Weyl: Methods of Organic Chemistry; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Georg Thieme Verlag: Stuttgart, Germany, 1995; Vol. E21, p 1730. (d) Nelson, S. G. Tetrahedron: Asymmetry 1998, 9, 357. (e) Gro¨ger, H.; Vogl, E. M.; Shibasaki, M. Chem. Eur. J. 1998, 4, 1137. (f) Mahrwald, R. Chem. Rev. 1999, 99, 1095. (g) Carreira, E. M. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer; Heidelberg, Germany, 1999; Vol. 3, p 997. (h) Arya, P.; Qin, H. Tetrahedron 2000, 56, 917. (i) Machajewski, T. D.; Wong, C.-H. Angew. Chem., Int. Ed. 2000, 39, 1353. (j) Carreira, E. M. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, Germany, 2000; Chapter 8, p 227.
(15) Reviews for chiral Lewis base-catalyzed asymmetric aldol reactions with trichlorosilyl enol ethers: (a) Denmark, S. E.; Stavenger, R. A.; Su, X.; Wong, K.-T.; Nishigaichi, Y. Pure Appl. Chem. 1998, 70, 1469. (b) Denmark, S. E.; Stavenger, R. A. Acc. Chem. Res. 2000, 33, 432. Chiral rhodium catalysts: (c) Reetz, M. T.; Vougioukas, A. E. Tetrahedron Lett. 1987 28, 793. Chiral palladium catalysts: (d) Sodeoka, M.; Ohrai, K.; Shibasaki, M. J. Org. Chem. 1995, 60, 2648. (e) Sodeoka, M.; Tokunoh, R.; Miyazaki, F.; Hagiwara, E.; Shibasaki, M. Synlett 1997, 463. (f) Sodeoka, M.; Shibasaki, M. Pure Appl. Chem. 1998, 70, 414. (g) Fujii A.; Sodeoka, M. Tetrahedron Lett. 1999, 40, 8011. See also: (h) Hagiwara, E.; Fujii, A.; Sodeoka, M. J. Am. Chem. Soc. 1998, 120, 2474. (i) Fujii, A.; Hagiwara, E.; Sodeoka, M. J. Am. Chem. Soc. 1999, 121, 5450. Chiral platinum catalysts: (j) Fujimura, O. J. Am. Chem. Soc. 1998, 120, 10032. Reviews on direct catalytic asymmetric aldol reactions of aldehydes with unmodified ketones: (k) Groger, H.; Wilken, J. Angew. Chem, Int. Ed. 2001, 40, 529. (l) List, B. Synlett 2001, 1675. Recent examples of direct catalytic asymmetric aldol reactions of aldehydes: (m) Yamada, Y. M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M. Angew. Chem, Int. Ed. Engl. 1997, 36, 1871. (n) Yamada, Y. M. A.; Shibasaki, M. Tetrahedron Lett. 1998, 39, 5561. (o) Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168. (p) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395. (q) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386. (r) List, B.; Pojarliev, P.; Castello, C. Org. Lett. 2001, 3, 573. (s) Saito, S.; Nakadai, M.; Yamamoto, H. Synlett 2001, 1245. (t) Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003. (u) Trost, B. M.; Ito, H.; Silcoff, E. R. J. Am. Chem. Soc. 2001, 123, 3367. (v) Trost, B. M.; Silcoff, E. R.; Ito, H. Org. Lett. 2001, 3, 2497. (w) Yoshikawa, N.; Kumagai, N.; Matsunaga, S.; Moll, G.; Ohshima, T.; Suzuki, T.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 2466. (x) Kumagai, N.; Matsunaga, S.; Yoshikawa, N.; Ohshima, T.; Shibasaki, M. Org. Lett. 2001, 3, 1539. (y) Suzuki, T.; Yamagiwa, N.; Matsuo, Y.; Sakamoto, S.; Yamaguchi, K.; Shibasaki, M.; Noyori, R. Tetrahedron Lett. 2001, 42, 4669. (z) Yoshikawa, N.; Shibasaki, M. Tetrahedron 2001, 57, 2569.
(16) (a) Ohkouchi, M.; Yamaguchi, M.; Yamagishi, T. Enantiomer 2000, 5, 71. (b) Ohkouchi, M.; Masui, D.; Yamaguchi, M.; Yamagishi, T. J. Mol. Catal. A: Chemical 2001, 170, 1.
(17) (a) Krüger, J.; Carreira, E. M. J. Am. Chem. Soc. 1998, 120, 837. (b) Pagenkopf, B. L.; Krüger, J.; Stojanovic, A.; Carreira, E. M. Angew. Chem., Int. Ed. 1998, 37, 3124.
(18) (a) Yanagisawa, A.; Kageyama, H.; Nakatsuka, Y.; Asakawa, K.; Matsumoto, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 1999, 38, 3701. (b) Yanagisawa, A.; Nakatsuka, Y.; Asakawa, K.; Kageyama, H.; Yamamoto, H. Synlett 2001, 69. (c) Yanagisawa, A.; Nakatsuka, Y.; Asakawa, K.; Wadamoto, M.; Kageyama, H.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2001, 1477.
(19) Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 8654-8655.
(20) Kirmse, W. Carbene Chemistry, 2nd ed.; Academic Press: New York, 1971.
(21) Breitmeier, E. Terpene; Teuber: Leipzig, 1999.
(22) (a) Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 8654-8655. (b) Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858-10859.
(23) (a) Sun, J.; Conley, M. P.; Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2006, 128, 9705-9710. (b) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 11806-11807.
(24) Gagosz, F. Org. Lett. 2005, 7, 4129-4132.
(25) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 6962-6963.
(26) For pioneering work in 1,6-enyne cycloisomerization involving cyclopropyl gold carbenoid, see: Nieto-Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402-2406. For an exception in the case of dienynol, see: Lin, M.-Y.; Das, A.; Liu, R.-S. J. Am. Chem. Soc. 2006, 128, 9340-9341.
(27) Wang, S.; Zhang, L. J. Am. Chem. Soc. 2006, 128, 14274-14275.
(28) Dudnik, A. S.; Schwier, T.; Gevorgyan, V. Org. Lett. 2008, 10, 1465-1468.
(29) Selected examples: (a) Cimetiere, B.; Dubuffet, T.; Landras, C.; Descombes, J.-J.; Simonet, S.; Verbeuren, T. J.; Lavielle, G. Bioorg. Med. Chem. Lett. 1998, 8, 1381. (b) Stutz, A.; Georgopoulos, A.; Granitzer, W.; Petranyi, G.; Berneyt, D. J. Med. Chem. 1986, 29, 112. (c) Dumas, M.; Dumas, J. P.; Bardou, M.; Rochette, L.; Advenier, C.; Giudicelli, J. F. Eur. J. Pharmacol. 1998, 348, 223.
(30) (a) Amer, I.; Amer, H.; Blum, J. J. Mol. Catal. 1986, 34, 221. (b) Cheng, J. C.; Maioriello, J.; Larsen, J. W. Energy Fuels 1989, 3, 321. (c) Kurteva, V. B.; Santos, A. G.; Afonso, C. A. M. Org. Biomol. Chem. 2004, 2, 514.
(31) (a) PtCl2: Harrack, Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mouriès, V.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656. (b) Cu(BF4)(CH3CN)4 or PtCl2: Fehr, C.; Farris, I.; Sommer, H. Org. Lett. 2006, 8, 1839. (c) Au salts: Gagosz, F. Org. Lett. 2005, 7, 4129. (d) PtCl2 and Au salts: Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 8654. (e) Pt, Cu, and Au salts: Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 2006, 45, 2901. (f) Pt and Au salts: Fürstner, A.; Hannen, P. Chem.-Eur. J. 2006, 12, 3006. (g) Au salts: Marion, N.; de Frémont, P.; Lemière, G.; Stevens, E. D.; Fensterbank, L.; Malacria, M.; Nolan, S. P. Chem. Commun. 2006, 19, 2048. (h) Pt salts: Mainetti, E.; Mourie`s, V.; Fensterbank, L.; Malacria, M.; Marco-Contelles, J. Angew. Chem., Int. Ed. 2002, 41, 2132. (i) Pt salts: Blaszykowski, C.; Harrak, Y.; Goncu¨alves, M.-H.; Cloarec, J.-M.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. Org. Lett. 2004, 6, 3771.
(32) Bluthe, N.; Malacria, M.; Gore, J. Tetrahedron Lett. 1984, 25, 2873.
(33) (a) Grisé, C. M.; Barriault, L. Org. Lett. 2004, 6, 3771. (b) Grisé, C. M.; Rodrigue, E. M.; Barriault, L. Tetrahedron. 2008, 64, 797.
(34) (a) Fürstner, A.; Davies, P. W.; Gress, T. J. Am. Chem. Soc. 2005, 127, 8244. (b) Fürstner, A.; Stelzer, F. J. Am. Chem. Soc. 2001, 123, 11863. (c) Lin, M.-Y.; Das, A.;
Liu, R.-S. J. Am. Chem. Soc. 2006, 128, 9340. (d) Tang, J.-M.; Bhunia, S.; Sohel, S.M.A.; Lin, M.-Y.; Liao, H.-Y.; Datta, S.; Das, A.; Liu, R.-S. J. Am. Chem.Soc. 2007, 129, 15677.
(35) (a) Hsu, Y.-C.; Datta, S.; Ting, C.-M.; Liu, R.-S. Org. Lett. 2008, 10, 521. (b) Lin, C.-C.; Teng, T.-M.; Odedra, A.; Liu, R.-S. J. Am. Chem. Soc. 2007, 129, 3798. (c) Bhunia, S.; Wang, K.-C.; Liu, R.-S. Angew. Chem., Int. Ed. 2008, 47, 5063.
(1) Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879.
(2) Dyker, G. Angew. Chem, Int. Ed. Engl. 1989, 28, 1698.
(3) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154.
(4) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633.
(5) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.
(6) Labinger, J. A.; Bercaw, J. E. Nature. 2002, 417, 507.
(7) Johnson, J. A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002, 124, 6900.
(8) Dangel, B. D.; Godula, K.; Youn, S. W.; Sezen, B.; Sames, D. J. Am. Chem. Soc. 2002, 124, 11856.
(9) Sezen, B.; Franz, R.; Sames, D. J. Am. Chem. Soc. 2002, 124, 13372.
(10) Waltz, K. M.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 11358.
(11) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000, 287, 1995.
(12) Waltz, K. M.; Hartwig, J. F. Science 1997, 277, 211.
(13) Karig, G.; Moon, M.-T.; Thasana, N.; Gallagher, T. Org. Lett. 2002, 4, 3115.
(14) Saaby, S.; Bayon, P.; Aburel, P. S.; Jorgensen, K. A. J. Org. Chem. 2002, 67, 4352.
(15) Tan, K. L.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2002, 124, 3202.
(16) Zhong, H. A.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2002, 124, 1378.
(17) Doyle, M.; McKervey, M.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides; Wiley: New York, 1998.
(18) Dorwald, F. Z. Metal Carbenes in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 1999.
(19) Regitz, M.; Maas, G. Aliphatic Diazo CompoundssProperties and Synthesis; Academic Press: New York, 1986.
(20) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
(21) Davies, H. M. L.; Antoulinakis, E. G. Org. React. (New York) 2001, 57, 1.
(22) (a) Müller, P.; Fernandez, D. Helv. Chim. Acta 1995, 78, 947. (b) Müller, P.; Baud, C.; Jacquier, Y.; Moran, M.; Nageli, I. J. Phys. Org. Chem. 1996, 9, 341. (c) Lee, Y. R.; Cho, B. S. Bull. Korean Chem. Soc. 2002, 23, 779. (d) Zhou, X.-G.; Yu, X.-Q.; Huang, J.-S.; Che, C.-M. Chem. Commun. 1999, 2377. (e) Müller, P.; Bolea, C. Helv. Chim. Acta 2002, 85, 483. (f) Müller, P.; Bolea, C. Molecules 2001, 6, 258. (g) Müller, P.; Fernandez, D.; Nury, P.; Rossier, J.-C. Helv. Chim. Acta 1999, 82, 935. (h) Müller, P.; Fernandez, D.; Nury, P.; Rossier, J.-C. J. Phys. Org. Chem. 1998, 11, 321. (i) Nageli, I.; Baud, C.; Bernardinelli, G.; Jacquier, Y.; Moran, M.; Müller, P. Helv. Chim. Acta 1997, 80, 1087.
(23) For reactions of Au–carbenoid intermediates, see: (a) Nieto-Oberhuber, C.; Muñoz, M. P.; Buñuel, E.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. Angew. Chem. 2004, 116, 2456 –2460; Angew. Chem. Int. Ed. 2004, 43, 2402 – 2406. (b) Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 8654 – 8655. (c) Fürstner, A.; Hannen, P.; Chem. Commun. 2004, 2546 – 2547.(d) Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858 –10859. e) Watson, l. D. G.; Ritter, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2056 –2057. (f) Yeom, H.-S.; Lee, J.-E.; Shin, S. Angew. Chem. 2008, 120, 7148 – 7151; Angew. Chem. Int. Ed. 2008, 47, 7040 –7043. (g) Hsu, Y.-C.; Ting, C.-M.; Liu, R.-S. J. Am. Chem. Soc. 2009, 131, 2090 – 2091. (h) Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442 – 1443. (i) Li, G.; Zhang, L.; Angew. Chem. 2007, 119, 5248 –5251; Angew. Chem. Int. Ed. 2007, 46, 5156 5159. (j) Peng, L.; Zhang, X.; Zhang, S.; Wang, J. J. Org. Chem. 2007, 72, 1192 –1197. (k) Oh, C. H.; Lee, S. J.; Lee, J. H.; Na, Y. J. Chem. Commun. 2008, 5794 –5796. (l) Hashmi, A. S. K.; Rudolph, M.; Weyrauch, J. P.; Wölfle, M.; Frey, W.; Bats, J. W. Angew. Chem. 2005, 117, 2858 – 2861; Angew. Chem. Int. Ed. 2005, 44, 2798 –2801. (m) Fructos, M. R.; Belderrain, T. R.; Frémont, P. De.; Scott, N. M.; Nolan, S. P.; Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem. 2005, 117, 5418 –5422; Angew. Chem. Int. Ed. 2005, 44, 5284 –5288. (n) For reactions of Pt–carbenoid intermediates: Oh, C. H.; Lee, J. H.; Lee, S. J.; Kim, J. I.; Hong, C. S. Angew. Chem. Int. Ed. 2008, 47, 7505 –7507. (o) Funami, H.; Kusama, H.; Iwasawa, N. Angew. Chem. Int. Ed. 2007, 46, 909 –911. (p) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, D. F. J. Am. Chem. Soc. 2005, 127, 18002. (q) Prasad, B. A. B.; Yoshimoto, F. K.; Sarpong, R. J. Am. Chem. Soc. 2005, 127, 12468-12469. (r) Harrak, Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mouriès, V.; Dhimane, A-L.; Fensterbank, L.; Malacria. M. J. Am. Chem. Soc. 2004, 126, 8656-8657. (s) Taduri, B. P.; Ran, Y.-F.; Huang, C.-W.; Liu, R.-S. Org. Lett. 2006, 8, 883-886.
(24) (a) Mundez ,M.; Mamane, V.; Fürstner, A. Chemtracts. 2003, 16, 397. (b) Fürstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863. (c) Fürstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. (d) Fürstner, A.; Szillat, H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305.
(25) Organic Chemistry R.T Morrison, R.N Boyd pp 473-478.
(26) (a) Patil, N. T.; Yamamoto, Y. Chem. Rev., 2008, 108, 3395. (b) Hashmi ,A. S. K. Chem. Rev. 2007, 107, 3180. (c) Li, J.; Brouwer, C.; He, C. Chem. Rev., 2008, 108, 3239; (d) Jiménez-Núñez, E. J.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (e) Arcadi, A. Chem. Rev. 2008, 108, 3266. (f) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (g) Chianese, A. R.; Lee, S. J.; Gagné, M. R. Angew. Chem., Int. Ed., 2007, 46, 4042. (h) Gorin, D. J.; Toste, F. D. Nature, 2007, 446, 395. (i) Jiménez- Núñez E. J.; Echavarren, A. M.; Chem. Commun. 2007, 333. (j) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (k) Fürstner, A.; Davies, P.W. Angew. Chem., Int. Ed. 2007, 46, 3410. (l) Michelet, V.; Toullec, P. Y.; Genêt, J.-P. Angew. Chem., Int. Ed. 2008, 47, 4268. (m) Crone, B.; Kirsh, S. F. Chem.–Eur. J. 2008, 14, 3514. (n) Hahn, C. Chem.–Eur. J. 2004, 10, 5888. (o) Sohel, S.M. A.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269.
(27) (a) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208. (b) Soriano, E.; Mar- Contelles, J. Acc. Chem. Res. 2009, 42, 1026. (c) Lee, S. I.; Chatani, N. Chem. Commun. 2009, 371. (d) Kirsch, S. F. Synthesis. 2008, 3183. (e) J.Muzart, Tetrahedron, 2008, 64, 5815. (f) Widenhoefer, R. A. Chem.–Eur. J. 2008, 14, 5382. (g) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2008, 47, 6754. (h) Bongers, N.; Krause, N. Angew. Chem. Int. Ed. 2008, 47, 2178. (i) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. (j) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. (k) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317.
(28) Davies, H. M. L.; Beckwith, R. E. J. Chem. ReV. 2003, 103, 2861.
(29) Nieto-Oberhuber, C.; López, S.; Jiménez-Núñez, E.; Echavarren, A. M. Chem. Eur. J. 2006, 12, 1677 – 1693.
(30) (a) Ma, S. M.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. 2006, 45, 200. (b) Bruneau, C. Angew. Chem. Int. Ed. 2005, 44, 2328.
(31) Taduri, B. P.; Sohel, S. M. A.; cheng, H.-M.; Lin, G.-U.; Liu, R.-S. Chem. Comun. 2007, 2530.
(32) Oxidation of metal-carbenes by others transition-metals, see: (a) Barluenga, J.; Bernad, P. L,; Concellon, J. M.; Pinera-Nicolas, A.; Carcia-Granda, S. J. Org. Chem. 1997, 62, 6870. (b) Barrett, A. G.; mortier, J.; Sabat, M.; Sturgess, M. A. Organometallics. 1988, 7, 2553. (c) Liang, W.-k.; Li, W.-T.; Peng, S.-M.; Wang, S.-L.; Liu, R.-S. J. Am. Chem. Soc. 1997, 119, 4404. (d) Quayle, P.; Rahman, S.; Ward, E. L. M. Tetradhedron Lett. 1994, 35, 3801. (e) Miki, K.; Yokoi, T.; nishino, F.; Ohe, K.; Uemura, S. J. Organometal. Chem. 2002, 645, 228. (f) Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 1999, 121, 11680. (g) Shin, S.; Gupta, A. K.; Rhim, C. Y.; Oh, C. H. Chem. Comun. 2005, 4429.
(33) (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215 – 236.
(34) Reviews: (a) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317 – 1382. (b) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431 – 436.
(35) (a) Méndez, M.; Muñoz, M. P.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511 – 10520. (b) Nevado, C. D.; Cárdenas, J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627 – 2635. (c) Muñoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics. 2005, 24, 1293 – 1300.
(36) Oi, S.; Tsukamoto, I.; Miyano, S.; Inoue, Y. Organometallics. 2001, 20, 3704 – 3709.
(37) Chatani, N.; Morimoto, T.; Muto, T.; Murai, S. J. Am. Chem. Soc. 1994, 116, 6049.
(38) (a) Fürstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785 – 6786. (b) Fürstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863 – 11869. (C) Blum, J.; Berr-Kraft, H.; Badrieh, Y. J. Org. Chem. 1995, 60, 5567 – 5569.
(39) N-Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.; Cardenas, D. J.; Echavarren. A. M. Angew. Chem. 2004, 116, 2456 – 2460. Angew. Chem. Int. Ed. 2004, 43, 2402 – 2406.
(40) (a) Barrett, A. G. M.; Mortier, J.; Sabat, M.; Sturgess, M. A. Organometallics. 1988, 7, 2553. (b) Chan, K. S.; Yeung, M. L.; Chan, W. K.; Wang, R. J.; Mak, T. C. W. J. Org. Chem. 1995, 60, 1741.
(41) (a) Seyferth, D.; Mai, V. A.; Gordon, M. E. J. Org. Chem. 1970, 35, 1993. (b) Adams, J.; Poupart, M. A.; Grenier, L.; Schaller, C.; Ouimet, N.; Frenette, R. Tetrahedron Lett. 1989, 30, 1749.
(42) (a) Doyle, M. P. Chem. Rev. 1986, 86, 919. (b) Maas, G. Top. Curr. Chem. 1987, 137, 76. (c) Padwa, A.; Krumpe, K. E. Tetrahedron 1992, 48, 5385. (d) Doyle, M. P. In Comprehensive Organometallic Chemistry II; Hegedus, L. S., Ed.; Pergamon Press: New York, 1995; Vol. 12, Chapter 5.2. (e) Padwa, A.; Austin, D. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1797. (f) Taber, D. F. In Comprehensive Organic Synthesis; Pattenden, G., Ed.; Pergamon Press: Oxford, U.K., 1991; Vol. 3, Chapter 4.2. (g) Adams, J.; Spero, D. M. Tetrahedron 1991, 47, 1765. (h) Taber, D. F.; Stiriba, S.-E. Organic Synthesis Highlights IV; Schmalz, H.-G., Ed.; Wiley-VCH: Weinheim, Germany, 2000; p130.
(43) (a) Lee, J. H.; Toste, F. D. Angew Chem., Int. Ed. 2007, 46, 912. (b) Lemie`re, G.; Gandon, V.; Cariou, K.; Fukuyama, T.; Dhimane, A. -L.; Fensterbank, L.; Malacria, M. Org. Lett. 2007, 9, 2207. (c) Gandon, V.; Lemiere, G.; Hours, A.; Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed. 2008, 47, 7534.
(44) (a) Roskamp, M.; Johnson, C. R. J. Am. Chem. Soc. 1986, 108, 6062. (b) Doyle, M. P.; Tamblyn, W. H.; Bagheri, V. J. Org. Chem. 1981, 46, 5094.
(45) (a) Marion, N.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2750. (b) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (c) Shi, F.-Q.; Li, X.; Xia, Y.; Zhang, L.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 15503.