研究生: |
賴李沛毅 Lai Lee, Pei-Yi |
---|---|
論文名稱: |
用於次世代顯示器驅動電路與觸控偵測電路之設計 Design for Next-Generation Display Driver Circuit and Touch Sensing Circuit |
指導教授: |
張慶元
Chang, Tsin-Yuan 盧志文 Lu, Chih-Wen |
口試委員: |
劉柏村
Liu, Po-Tsun 蘇國棟 Su, Guo-Dung 黃柏鈞 Huang, Po-Chiun 劉怡君 Liu, Jenny Yi-Chun |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 127 |
中文關鍵詞: | 觸控面板控制器 、電場 、內建數位類比轉換器之運算放大器 、數位類比轉換器 、液晶顯示器之源驅動器 、基於互補式金氧半導體基底之微型發光二極體顯示器 、微型顯示器 |
外文關鍵詞: | Touch panel controller (TPC), Electric field, DAC embedded op-amp, digital-to-analog converter (DAC), liquid-crystal display (LCD) column driver, Micro LED on CMOS, micro display |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中首先介紹觸摸技術和顯示技術,其二是人們與數位裝置之常見輸入和輸出介面。在本文的第一部分,我們提出了一種新的觸摸檢測機制來實現觸摸功能。藉由生活環境中電力線所散逸出訊號,其耦合至人體來當作觸控訊號來源,由本電路不需要一般傳統電容式觸控之發送電路。所提出的傳感技術可以通過手指觸摸實現46.5 dB的信噪比。在電池電源為1.8V和2.5V的情況下,此讀出電路總功耗為2 mW。
第二部分是提出一種具有高線性度和高面積效率的高分辨率薄膜電晶體面板驅動器電路。具有部分分段的分段線性數位類比轉換器的10位元單色色階,1026通道列驅動器電路的設計。本電路採用新邏輯組合控制之類比數位轉換器,藉此可以有效的減小數位類比轉換器電晶體個數進而達到面積縮小。於輸出緩衝電路具備內建解碼器與內插功能,為解決於多內差位元與大的內差電壓範圍造成之線性度問題,輸出緩衝電路中採用新的輸入對架構,此方式可以有效地增進電壓內插之線性度。本晶片採用台積電0.18μm工藝,1.8V/9V/18V高壓製程製作。在伽瑪曲線的高亮度部分測得的最大擬合誤差為8.2 mV。在10mV的容差範圍內驅動5kΩ電阻和300pF電容的最大建立時間為5.6 μs。沒有失調消除,最大晶片間DVO為16 mV。
第三部分介紹了下一代基於CMOS的Micro LED顯示技術的驅動電路,來實現微型化高解析度螢幕,此技術可以用於虛擬實境的應用中。首先我們提出一個32 × 30 Mini LED,此Mini LED是基於印刷電路板上,用於此面板之驅動電路可以達每秒160幀,PWM的電壓驅動方式可以到10位元的單色色深。此驅動電路之線性度表現上可以達到INL=0.077LSB與DNL=0.08LSB。藉由32 × 30 Mini LED驅動電路再提出基於CMOS的Micro LED分辨率為250 × 250的單尺寸顯示驅動器電路和每秒60幀的基於矽的Micro LED驅動器。在該項目中,採用台積電0.35μm工藝和12.8μm寬像素設計來實現近2000PPI的視覺高分辨率,採用共陰極的連接Micro LED面板,並通過PWM調變與電壓驅動來實現10位色深
In the past ten years, due to the rapid development of semiconductor technology, fast and powerful hardware platforms have provided a proper platform for application software to perform. The combination of hardware and software has created many practical and interesting high-tech products in our lives. We reliance and demand for these high-tech products are also increasing. The development of the input and output interface of human and computer opinion has been the focus of development in recent years.
In the first part of this paper, we proposed a new touch detection mechanism to achieve the touch function. The proposed sensing technique achieves 46.5-dB signal-to-noise ratios with finger touch. With battery power supply of 1.8V and 2.5V, total power consumption of the proposed readout circuit is measured as just 2mW.
The second part is to propose a high-resolution TFT panel driver circuit with high linearity and high area efficiency. The design of a 10-bit 1026-channel column driver IC with partially segmented piecewise linear DACs. The maximal fitting error of 8.2 mV was measured in the high-luminance segment of the gamma curve. The maximum settling time for driving a 5-kΩ-resistance and 300-pF-capacitance load within 10-mV tolerance is 5.6 μs. With no offset cancellation, the maximum inter-chip DVO is 16 mV.
The third part introduces the driving circuit for the next-generation Micro LED display technology. First, we proposed a driver for 32 × 30 Mini LED panel. This Mini LED is based on a printed circuit board. The driving circuit used for this panel can reach 160 frames per second. The PWM voltage driving method can reach a 10-bit single color depth. The linearity performance of this driving circuit can reach INL = 0.077LSB and DNL = 0.08LSB. Through the 32 × 30 Mini LED on PCB driver circuit, a compact Micro LED on CMOS display driver circuit with a resolution of 250 × 250 is proposed, and this Micro LED on CMOS driver can work at 60 frames per second. In this work, the TSMC 0.35μm process and the 12.8μm wide pixel design are used to achieve a high resolution of nearly 2000 PPI for VR/AR usage, and a 10-bit color depth is achieved by PWM modulation.
[1] S. Zhang, “Development Trend Of Capacitive Touch Screen,” 2019 , [Online], Available: http://m.vtouchscreen.com/news/development-trend-of-capacitive-touch-screen-27776988.html
[2] Eizo Nanao Corporation, “ColorEdge CG279X datasheet,” Eizo ColorEdge CG279X datasheet, 2020, [Online], Available: https://www.eizo.be/fileadmin /datasheet/CG319X_BE-EN.pdf
[3] S. Lowry, “What is the difference between LCD screen and OLED screen?” 2018 [Online], Available: https://m.gearbest.com/blog/how-to/what-is-the-difference- between-lcd-screen-and-oled-screen-3077
[4] R. Dube, “Capacitive vs. Resistive Touchscreens: What Are the Differences?” 2018 [Online], Available: https://www.makeuseof.com/tag/differences-capacitive- resistive-touchscreens-si/
[5] Sammy, The Ebook King, “Resistive versus Capacitive versus Infrared Touch Screen eReader–Which Is Best?” 2011 [Online], Available: http://www.ebookreaderguide.com/2011/05/29/resistive-versus-capacitive-versus-infrared-touch-screen-technologywhich-is-best-for-ereaders/
[6] G. Finn, “New Touch-Screen Controllers Offer Robust Sensing for Portable Displays” Analog Dialogue 44-02 Back Burner, vol 44, Feb, 2010
[7] G. Barrett and R. Omote, “Projected-capacitive touch technology,” Information Display, vol. 26, no. 3, pp. 16-21, Mar. 2010.
[8] J.-Y. Ruan, Paul C.-P. Chao and W.-D. Chen, "A multi-touch interface circuit for a large-sized capacitive touch panel," Sensors, 2010 IEEE, Kona, HI, 2010, pp. 309-314.
[9] W. Tim and B. Tim, “Projected-capacitive touch systems from the controller point of view,” Information Display, vol. 3, no. 11, pp. 8-11, Nov. 2011.
[10] S. Ko, H. Shin, J. Lee, H. Jang, B.-C. So, I. Yun aand K. Lee, "Low noise capacitive sensor for multi-touch mobile handset's applications," in IEEE Asian Solid State Circuits Conference, 2010, pp. 1-4.
[11] I.-S. Yang and O.-K. Kwon, "A touch controller using differential sensing method for on-cell capacitive touch screen panel systems," IEEE Transactions on Consumer Electronics, vol. 57, no. 3, pp. 1027-1032, Aug. 2011.
[12] H. K. Ouh, J. Lee, S. Han, H. Kim, I. Yoon and S. Hong, "A programmable mutual capacitance sensing circuit for a large-sized touch panel," in IEEE International Symposium on Circuits and Systems, Seoul, Korea (South), 2012, pp. 1395-1398.
[13] H. Jang, H. Shin, S. Ko, I. Yun and K. Lee, "12.5 2D Coded-aperture-based ultra-compact capacitive touch-screen controller with 40 reconfigurable channels," in IEEE International Solid-State Circuits Conference, San Francisco, CA, 2014, pp. 218-219.
[14] J. S. Lee, D. H. Yeo, H. J. Kwon, B. Kim, J. Y. Sim and H. J. Park, "An LCD-VCOM-Noise Resilient Mutual-Capacitive Touch-Sensor IC Chip With a Low-Voltage Driving Signal," in IEEE Sensors Journal, vol. 15, no. 8, pp. 4595-4602, Aug. 2015.
[15] Japan Display Inc., “LCD Basics, ” 2020, [Online], Available: https://www. j-display.com/english/technology/lcdbasic.html
[16] M. Ohta, H. Tsutsu, H. Takahara, I. Kobayashi, T. Uemura, and Y. Takubo, “A novel current programmed pixel for active matrix OLED displays,” in The SID International Symposium, 2003, pp. 108-111.
[17] J. H. Baek et al., “A current-mode display driver IC using sample-andhold scheme for QVGA full-color AMOLED displays,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2974–2982, Dec. 2006.
[18] C.-L. Lin, P.-S. Chen, M.-H. Cheng, Y.-T. Liu, and F.-H. Chen, “A Three-Transistor Pixel Circuit to Compensate for Threshold Voltage Variations of LTPS TFTs for AMOLED Displays, ” Journal of Display Technology, vol. 11, no. 2, pp. 146-148, Feb. 2015.
[19] C. Wang, C. Leng, L. Wang, W. Lu, and S. Zhang, “An Accurate and Fast Current-Biased Voltage-Programmed AMOLED Pixel Circuit With OLED Biased in AC Mode,” Journal of Display Technology, vol. 11, no. 7, pp. 615-619, Jul. 2015.
[20] C.-L. Lin, F.-H. Chen, C.-C. Hung, P.-S. Chen, M.-Y. Deng, C.-M. Lu, and T.-H. Huang, “New a-IGZO Pixel Circuit Composed of Three Transistors and One Capacitor for Use in High-Speed-Scan AMOLED Displays,” Journal of Display Technology, vol. 11, no. 12, pp. 1031-1034, Dec. 2015.
[21] C.-L. Fan, Y.-C. Chen, C.-C. Yang, Y.-K. Tsai, and B.-R. Huang, “Novel LTPS-TFT Pixel Circuit with OLED Luminance Compensation for 3D AMOLED Displays,” Journal of Display Technology, vol. 12, no. 5, pp. 425-428, May 2016.
[22] J.-S. Bang, H.-S. Kim, S.-H. Park, G.-H. Kim, and G.-H. Cho, “A real-time TFT compensation through power line current sensing for high resolution AMOLED displays,” in The SID International Symposium, 2014, pp. 724-727.
[23] J.-S. Bang, H.-S. Kim, S.-H. Park, K.-D. Kim, S.-W. Choi, O.-J. Kwon, C.-S. Shin, J. Lee and G.-H. Cho, “Hybrid driver IC for real-time TFT non-uniformity compensation of ultra high-definition AMOLED display,” in Symposium on VLSI Circuits, Kyoto, 2015, pp. C326-C327.
[24] J.-S. Bang, H.-S. Kim, K.-D. Kim, O.-J. Kwon, C.-S. Shin, J. Lee, and G.-H. Cho, “A Hybrid AMOLED Driver IC for Real-Time TFT Nonuniformity Compensation,” IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 966–978, Sep. 2016.
[25] D. Lin, “Micro LED: Understand the New Display Technology in 3 minutes,” 2017, [Online], Available: https://www.ledinside.com/news/2017/4/micro_led _understand_the_new_display_technology_in_3_minutes
[26] Y. Hu, L. Huang, W. Rieutort-Louis, J. Sanz-Robinson, S. Wagner, J.C. Sturm and N. Verma, "3D gesture-sensing system for interactive displays based on extended-range capacitive sensing, " in IEEE International Solid-State Circuits Conference, San Francisco, CA, Feb. 2014, pp.212-213
[27] Mircochip, “MGC3030/3130 3D Tracking and Gesture Controller Data Sheet, ” MGC3030/3130 datasheet, Mar. 2014
[28] J. M. Carrillo, J. F. Duque-Carrillo, G. Torelli and J. L. Ausín, "Constant-gm constant-slew-rate high-bandwidth low-voltage rail-to-rail CMOS input stage for VLSI cell libraries," IEEE Journal of Solid-State Circuits , vol.38, no.8, pp.1364,1372, Aug. 2003
[29] H.-Y. Huang, J.-Y. Lin, C.-C. Hsieh, W.-H. Chang, H.-H. Tsai and C.-F. Chiu, “A 9.2b 47fJ/Conversion-Step Asynchronous SAR ADC with Input Range Prediction DAC Switching,” in Proc. of 2012 IEEE International Symp. on Circuits and Systems, May. 2012, pp. 2353-2356.
[30] C.-C. Liu , S.-J. Chang , G.-Y. Huang , and Y.-Z. Lin , "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure", IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Mar. 2010.
[31] D. McCartney, “Tuning LCDs to Tune TV,” Information Display, vol. 20, no. 10, Oct. 2004, pp. 14-17.
[32] M.J. Bell, “An LCD column driver using a switch capacitor DAC,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2756-2765, Dec. 2005.
[33] I. F.-Chen, R. Muller, W. Kan, M. Fazio, A. Farrell, and D. Whitney, “A 10b 75ns CMOS Scanning-Display-Driver System for QVGA LCDs,” in IEEE International Solid-State Circuits Conference, San Francisco, CA, Feb. 2008, pp. 172-173.
[34] I. Knausz, and R. J. Bowman, “A Low Power, Scalable, DAC Architecture for Liquid Crystal Display Drivers,” IEEE Journal of Solid-State Circuits, vol. 44, no. 9, pp. 2402-2410, Sep. 2009.
[35] J.-S. Kang, J.-H. Kim, S.-Y. Kim, J.-Y. Song, O.-K. Kwon, Y.-J. Lee, B.-H. Kim, C.-W. Park, K.-S. Kwon, W.-T. Choi, S.-K. Yun, I.-J. Yeo, K.-B. Han, T.-S. Kim, S.-I. Park, “10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulators (SOMs),” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2913–2922, Dec. 2007.
[36] H.-M. Lee, Y.-J. Jeon, S.-W. Lee, G.-H. Cho, H.-R. Kim, Y.-K. Choi, and M. Lee, “A 10b Column Driver with Variable-Current-Control Interpolation for Mobile Active-Matrix LCDs,” in IEEE International Solid-State Circuits Conference, San Francisco, CA, Feb. 2009, pp. 266–267.
[37] J.-K. Woo, D.-Y. Shin, D.-K. Jeong, and S. Kim, “High-Speed 10-bit LCD Column Driver with a Split DAC and a Class-AB Output Buffer,” IEEE Trans. on Consum. Electron., vol. 55, no. 3, pp. 1431–1438, Aug. 2009.
[38] H.-S. Kim, J.-H. Yang, S.-H. Park, S.-T. Ryu, and G.-H. Cho, “A 5.6mV Inter-Channel DVO 10b Column-Driver IC with Mismatch-Free Switched-Capacitor Interpolation for Mobile Active-Matrix LCDs, ” in IEEE International Solid-State Circuits Conference, San Francisco, CA, Feb. 2013, pp. 392–393.
[39] Y.-C. Jeong, C.-C. Park, L.-S. Kim, “A new crosstalk compensation method in line inversion TFT-LCD's, ” IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, vol. 44, no. 6, pp. 552–555, Jun. 1997.
[40] J-S Kim, D-K Jeong, and Gyudong Kim, “A multi-level multi-phase charge-recycling method for low-power AMLCD column drivers,” IEEE Journal of Solid-State Circuits, Vol. 35, No. 1, Jan. 2000, pp. 74-84.
[41] J.-H. Woo, J.-G. Lee, I.-S. Kim, Y.-H. Jun, G.-C. Hwang, M.-H. Lee, B.-S. Kong, “Line inversion-based mobile TFT-LCD driver IC with accurate quadruple-gamma-curve correction,” in IEEE Asian Solid State Circuits Conference, 2011, pp. 341–344.
[42] D,-S, Kim, S,-E, Lee, S,-J, Nam, O,-K, Kwon, “A Power-Efficient Driving Method for In-Plane Switching-Mode TFT-LCD Using a Negative Liquid Crystal,” Journal of Display Technology, vol. 10, no. 12, pp. 1093-1100, Dec. 2014.
[43] D.-S. Kim, O.-K. Kwon, “A New Dot Inversion Data Addressing Technique Using Double Rate Driving Method for High Image Quality and Low-Power TFT-LCDs,” Journal of Display Technology, vol. 12, no. 10, pp. 1019–1026, Oct. 2016.
[44] Y.-C. Sung, S.-M. So, J.-K. Kim, and O.-K. Kwon, “10bit Source Driver with Resistor-Resistor-String Digital to Analog Converter,” in The SID International Symposium, Seminar & Exhibition Digest of Technical Papers, May, 2005, Volume 36, Issue 1, pp. 1099-1101.
[45] C.-W. Lu, C.-C. Shen, and W.-C. Chen, “An area-efficient fully R-DAC-based TFT-LCD column driver,” IEEE Trans. on Circuits and Systems I, Reg. Papers, vol. 57, no. 10, pp. 2588–2601, Aug. 2010.
[46] C.-W. Lu, P.-Y. Yin, C.-M. Hsiao, and M.-C. F. Chang, “A 10b Resistor-Resistor-String DAC with Current Compensation for Compact LCD Driver ICs,” in IEEE International Solid-State Circuits Conference, San Francisco, CA, 2011, pp. 318–319.
[47] H.-S. Kim, J.-H. Yang, S.-H. Park, S.-T. Ryu, G.-H. Cho, “A 10-Bit Column-Driver IC With Parasitic-Insensitive Iterative Charge-Sharing Based Capacitor-String Interpolation for Mobile Active-Matrix LCDs,” IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 766–782, March 2014.
[48] C.-W. Lu, P.-Y. Yin, Y.-T. Lin, “A Column Driver Architecture with Double Time-Division Multiplexing RDACs for TFT-LCD Applications,” IEEE Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2352-2364, October, 2014.
[49] M.J. Bell, “An LCD column driver using a switch capacitor DAC,” in IEEE International Solid-State Circuits Conference, San Francisco, CA, 2005, pp. 556-557.
[50] J.-S. Kang, J.-H. Kim, S.-Y. Kim, J.-Y. Song, O.-K. Kwon, Y.-J. Lee, B.-H. Kim, C.-W. Park, K.-S. Kwon, W.-T. Choi, S.-K. Yun, I.-J. Yeo, K.-B. Han, T.-S. Kim, S.-I. Park, “A 10b driver IC for a spatial optical modulator for full HDTV applications,” in IEEE International Solid-State Circuits Conference, San Francisco, CA, 2007, pp. 138–139.
[51] Y.-K. Choi, Z.-Y. Wu, K. M. Kim, Y. H. Lee, M. S. Cho, H. S. Kim, D. H. Lee, W.-G. Jung, “A Compact Low-Power CDAC Architecture for Mobile TFT-LCD Driver ICs,” in IEEE International Solid-State Circuits Conference, San Francisco, CA, 2008, pp. 176–177.
[52] C.-W. Lu, L.-C. Huang, “A 10-Bit LCD Column Driver with Piecewise Linear Digital to Analog Converters,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 371-378, Feb., 2008.
[53] C. Park, K.-D. Kim, S.-W. Lee, G.-S. Park, S.-T. Ryu, and G.-H. Cho, “A 10b Linear Interpolation DAC using Body-Transconductance Control for AMLCD Column Driver,” in IEEE Asian Solid State Circuits Conference, 2010, pp. 1–4.
[54] Y.-J. Jeon, H.-M. Lee, S.-W. Lee, G.-H. Cho, H.-R. Kim, Y.-K. Choi, and M. Lee, “A Piecewise Linear 10 Bit DAC Architecture With Drain Current Modulation for Compact LCD Driver ICs,” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3659–3675, Dec. 2009.
[55] C.-W. Lu, P.-Y. Yin, C.-M. Hsiao, M.-C. F. Chang, and Y.-S. Lin, “A 10-bit Resistor-Floating-Resistor-String DAC (RFR-DAC) for High Color-Depth LCD Driver ICs,” IEEE Journal of Solid-State Circuits, vol. 47, no. 10, pp. 2454-2466, Oct. 2012.
[56] W.-K. Park, C.-U. Cha, S.-C. Lee, “A Novel Level-Shifter Circuit Design For Display Panel Driver,” in 49th IEEE Int. Midwest Symposium on Circuits and Systems, 2006, vol. 2, pp. 391–394.
[57] C.-W. Lu, Y.-C. Huang, Y.-S. Lin, “Area-Efficient Fully R-DAC based TFT-LCD Column Driver Architectures with DAC Sharing Techniques,” Journal of Display Technology, vol. 11, no. 9, pp. 689-697, Sept., 2015.
[58] F. Yang, C. Wang, H.-M. Lam, Q. Zhao, J. Fan, S. Zhang, “A floating high-voltage level shifter used in a pre-charge circuit for large-size AMOLED displays,” in IEEE International Conference on Electron Devices and Solid-State Circuits, 2016, pp. 267–270.
[59] C.-W. Lu, Y.-G. Chang, X.-W. Huang, J.-. Cheng, P.-Y. Tseng, C.-H. Chou, "A 10-Bit 1026-Channel Column Driver IC with Partially Segmented Piecewise Linear Digital-to-Analog Converters for Ultra-High-Definition TFT-LCDs with One Billion Color Display," in IEEE Asian Solid State Circuits Conference, 2018, pp. 17-20.
[60] H.-C. Seol, S.-K. Hong, and O.-K. Kwon, “An Area-Efficient High-Resolution Resistor-String DAC with Reverse Ordering Scheme for Active Matrix Flat-Panel Display Data Driver ICs, ” Journal of Display Technology, vol. 12, no. 8, pp. 828–834, Dec. 2016.
[61] C.-W. Lu, C.-M. Hsiao, and P.-Y. Yin, “A 10-b Two-Stage DAC with an Area-Efficient Multiple-Output Voltage Selector and a Linearity-Enhanced DAC-Embedded Op-Amp for LCD Column Driver ICs,” IEEE Journal of Solid-State Circuits, vol. 48, no. 6, pp. 1475–1486, Jun. 2013.
[62] A. S. Sedra, K. C. Smith, “Microelectronic Circuits,” New York, OXFORD UNIVERSITY PRESS, 7th Edition, 2016, p. 604.
[63] H. G. Li, X. Y. Yin, and Z. Y. Zhang, “High-precision mixed modulation DAC for an 8-bit AMOLED driver IC,” Journal of Display Technology, vol. 11, no. 5, pp. 423–429, May 2015.
[64] A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and D. Striakhilev, “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1477–1486, Sep. 2004.
[65] D.-U. Jin et al., “World-largest (6.5”) flexible full color top emission AMOLED display on plastic film and its bending properties,” in The SID International Symposium, 2012, pp. 983–985.
[66] N. Komiya, C. Oh, K. Eom, Y. Kim, S. Park, and S. Kim, “A 2.0-in. AMOLED panel with voltage programming pixel circuits and point scanning data driver circuits,” in Proc. Int. Disp. Workshops (IDW’04), 2004, pp. 283–286.
[67] H.-J. In and O.-K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron. Device Lett., vol. 30, no. 4, pp. 377–379, Apr. 2009.
[68] M. Ohta, H. Tsutsu, H. Takahara, I. Kobayashi, T. Uemura, and Y. Takubo, “A novel current programmed pixel for active matrix OLED displays,” in The SID International Symposium, 2003, pp. 108–111.
[69] J. H. Baek et al., “A current-mode display driver IC using sample-andhold scheme for QVGA full-color AMOLED displays,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2974–2982, Dec. 2006.
[70] C.-L. Lin, P.-S. Chen, M.-H. Cheng, Y.-T. Liu, and F.-H. Chen, “A Three-Transistor Pixel Circuit to Compensate for Threshold Voltage Variations of LTPS TFTs for AMOLED Displays, ” Journal of Display Technology, vol. 11, no. 2, pp. 146-148, Feb 2015.
[71] C. Wang, C. Leng, L. Wang, W. Lu, and S. Zhang, “An Accurate and Fast Current-Biased Voltage-Programmed AMOLED Pixel Circuit With OLED Biased in AC Mode, ” Journal of Display Technology, vol. 11, no. 7, pp. 615-619, Jul. 2015.
[72] C.-L. Lin, F.-H. Chen, C.-C. Hung, P.-S. Chen, M.-Y. Deng, C.-M. Lu, and T.-H. Huang, “New a-IGZO Pixel Circuit Composed of Three Transistors and One Capacitor for Use in High-Speed-Scan AMOLED Displays, ” Journal of Display Technology, vol. 11, no. 12, pp. 1031-1034, Dec. 2015.
[73] C.-L. Fan, Y.-C. Chen, C.-C. Yang, Y.-K. Tsai, and B.-R. Huang, “Novel LTPS-TFT Pixel Circuit with OLED Luminance Compensation for 3D AMOLED Displays, ” Journal of Display Technology, vol. 12, no. 5, pp. 425-428, May 2016.
[74] J.-S. Bang, H.-S. Kim, S.-H. Park, G.-H. Kim, and G.-H. Cho, “A real-time TFT compensation through power line current sensing for high resolution AMOLED displays,” in The SID International Symposium, 2014, pp. 724-727.
[75] J. Sanford and E. Schlig, “Direct view active matrix VGA OLED-on-crystalline-silicon,” in Soc. Information Display Dig., 2001, pp. 376–379.
[76] W. Howard and O. Prache, “Microdisplays based upon OLED,” IBM J. Res. Develop., vol. 45, Jan. 2002.
[77] G. B. Levy, William Evans, John Ebner, Patrick Farrell, Mike Hufford, Bryan H. Allison, David Wheeler, Haiqing Lin, Olivier Prache, and Eric Naviasky, “An 852 600 Pixel OLED-on-Silicon Color Microdisplay Using CMOS Subthreshold-Voltage-Scaling Current Drivers, ” IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1879–1889, Sep. 2002.