簡易檢索 / 詳目顯示

研究生: 吳金玲
Wu, Chin-Ling
論文名稱: 雙腔體超導共振腔連接處長度對高頻電磁場模態之影響
Effect of Connecting Length on Electromagnetic Modes of Double-Cell Radio-Frequency Cavity
指導教授: 葉孟考
Yeh, Meng-Kao
口試委員: 蔣長榮
林明泉
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 55
中文關鍵詞: 超導共振腔高頻電磁場模態
外文關鍵詞: Radio-Frequency Cavity, Electromagnetic Modes
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由有限單元計算軟體ANSYS針對1.5 GHz共振腔的主腔體進行結構與電磁場的耦合分析,基於以光速通過腔體軸心的帶電粒子之加速效應,發現雙腔體1.5 GHz共振腔的兩個主腔體之間的連接部分長度對其電磁場特性有顯著影響;在多種考慮之下,該連接部分最終優化設計為12 mm。由於次低頻TM010電磁場共振模態可提供帶電粒子最有效的加速度,因此所有的優化和研究皆以此模態為主。經過網格細化的收斂分析後,採用特定網格計算在各種條件下雙腔體共振腔的次低頻TM010電磁場的共振頻率。隨著溫度從300 K降至 2 K,銅腔體的電磁場共振頻率增加0.361%,鈮腔體的共振頻率則因熱收縮較低僅增加0.172%。此外,考慮腔體結構的彈塑性行為,以增量計算進行調頻。當共振腔受到101.3 kPa的外部壓力,即為一大氣壓的內外壓差下,當小圓管(SBP)端固定不動時,大圓管(LBP)端的軸向位移為 -0.18318 mm,而電磁場共振頻率從1.507005695 GHz減少至1.506709303 GHz。隨著LBP端面的軸向拉伸位移量逐漸增加至超過2mm時,彈塑性行為首先發生在大圓管與主腔體之間的連接處曲面部分。進行調頻的標準計算程序為依序施加軸向位移UZ、再反向施加軸向位移-2Uz、最終釋放所有負載;此時共振腔的殘餘形變會使其次低頻TM010電磁場的共振頻率改變,且共振頻率變化量與LBP端的殘餘軸向位移量為線性變化。


    Length of the connection section between the main cavity structures of a 2-cell 1.5 GHz radio-frequency cavity has a significant effect on its electromagnetic characteristics. With the structure-electromagnetism coupled analysis by finite element code ANSYS, this connection section is herein optimized to a length of 12 mm based on its accelerating effects on charged particles passing through the cavity axis with light speed. It is firstly investigated that the second TM010-like mode provides most effective acceleration and thus all the optimization and following studies are mostly focused on this mode. With the fine mesh, which is verified by the convergence test, resonance frequencies of the second TM010-like mode of this 2-cell cavity at various conditions are computed. As the temperature decreasing from 300 K to 2 K, this resonance frequency of the copper cavity increases 0.361%, while that of the niobium cavity increases only 0.172% due to its lower thermal contraction. Also investigated is the frequency-tuning process by considering elastoplastic behavior of the cavity structure with incremental computations. The longitudinal displacement of the LBP (Large Beam Pipe) end is -0.18318 mm when the cavity is initially applied with an external pressure of 101.3 kPa, i. e., 1 atm, whereas the resonance frequency changes from 1.507005695 GHz to 1.506709303 GHz. Then the longitudinal displacement of the end surface of LBP is incrementally increased to find that the elastoplastic behavior firstly happens at the curved section between LBP and main cavity structure when the applied longitudinal displacement beyond 2 mm. A load cycle is completed by sequentially applying a longitudinal displacement UZ, a negative displacement -2Uz, and finally releasing all the loads. Residual deformations on the cavity are thus generated and correspondingly change its resonance frequency of the second TM010-like mode. It is found the frequency shift varies linearly to the residual longitudinal displacement of the LBP end.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖表目錄 VI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目標 4 第二章 結構與高頻電磁場特性之關聯 6 2.1高頻電磁場理論 6 2.2 結構彈塑性變形 9 2.3 圓柱形導波管截止頻率 11 2.4 軸向加速電壓 11 第三章 有限單元法分析 13 3.1 共振腔體之結構分析 13 3.2 共振腔體內部之高頻電磁場 15 3.3 1.5 GHz 雙腔體共振腔 17 3.3.1 1.5 GHz雙腔體共振腔電磁場模態 18 3.3.2 雙腔體連接處截止頻率 19 第四章 結果與討論 20 4.1 不同連接處長度之共振腔高頻電磁場特性 20 4.1.1第一電磁場模態與第二電磁場模態共振頻率 21 4.1.2 兩腔體軸向電場峰值差 21 4.1.3 電磁場共振半週期與理想加速時間差 22 4.1.4第二電磁場模態與第一電磁場模態加速電壓比值 23 4.2 1.5 GHz 雙腔體共振腔頻率調整 23 4.2.1共振腔冷卻後之電磁場共振頻率變化 24 4.2.2共振腔端面位移對電磁場共振頻率之影響 26 第五章 結論與未來展望 30 5.1連接處長度與高頻電磁場特性 30 5.2結構變化與電磁場共振頻率 30 5.3未來展望 31 參考文獻 32

    1. 國家同步輻射研究中心,http://www.nsrrc.org.tw/,2016
    2. H. Winick, Synchrotron Radiation Sorces: A Primer, World Scientific, Singapore, 1994.
    3. Ch. Wang, L. H. Chang, S. S. Chang, F. Z. Hsiao, M. C. Lin, G.H. Luo, T.T. Yang, M. S. Yeh, C. C. Kuo, R. Sah, C.T. Chen., "Superconducting RF Project at the Synchrotron Radiation Research Center," Proceedings of the 10th Workshop on RF Superconductivity, Tsukuba, Japan, paper ID TL010, 2001.
    4. Ch. Wang, L. H. Chang, M. S. Yeh, M. C. Lin, F. T. Chung, S. S. Chang, T. T. Yang, M. H. Tsai., “Operational Experience of the Superconducting RF Module at TLS,” Physical C:Superconductivity, Vol. 441, pp. 277-281, 2006.
    5. H. Padamsee, P. Barnes, C. Chen, W. Hartung, J. Kirchgessner, D. Moffat, R. Ringrose, D. Rubin, Y. Samed, D. Saraniti, J. Sears, Q. S. Shu, and M. Tigner, "Design Challenges for High Current Storage Rings," Particle Accelerators, Vol. 40, pp. 17-41, 1992.
    6. Ch. Wang, L. H. Chang, M. C. Lin, M. S. Yeh, F. Z. Hsiao, F. T. Chung, T. T. Yang, S. S. Chang, M. H. Tsai, M. H. Chang and Y. H. Lin, 2007, “Commissioning Experience of Superconducting Radio Frequency Systems for the Taiwan Light Source,” Proceedings of the 2007 Asian Particle Accelerator Conference, pp. 549-553, Indore, India, 2007.
    7. H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for Accelerators, New York, Wiley, 1998.
    8. F. R. Elder, A. M. Gurewitsch, R. V. Langmuir and H. C. Pollock, “Radiation from Electrons in a Synchrotron,” Physical Review, Vol. 71, pp. 829-830, 1947.
    9. N. Akdogan, Origin of Ferromagnetism in Oxide-Based Diluted Magnetic Semiconductors, Ch4.1 Synchrotron Radiation, pp. 23-25, Ruhr-Universitat, Bochum, Germany, 2008.
    10. V. D. Shemeliny and G. H. Hoffstaetter, “First-Principle Approach for Optimization Cavity Shape for High Gradient and Low Loss,” Proceedings of IPAC2012, New Orleans, Louisiana, USA, 2012.
    11. C. C. Kuo, J. Y. Chen, M. S. Chiu, P. J. Chou, Y. C. Liu, H. J. Tsai, F. H. Tseng, K. T. Hsu, G. H. Luo and C. T. Chen, “Commissioning of the Taiwan Photon Source,” Proceedings of IPAC 2015, Richmond, VA, USA, pp. 1314-1318, 2015.
    12. L. H. Chang, Ch. Wang, M. C. Lin and M. S. Yeh, “Effects of the Passive Harmonic Cavity on the Beam Bunch,” Proceedings of the 2005 Particle Accelerator Conference, pp. 3904-3906, 2005.
    13. Ch. Wang, L. H. Chang, T. T. Yang, R. H. Tzeng, M. C. Lin, W. K. Lau and C. C. Kuo, “Design of a Third Harmonic Landau Cavity for the SRRC Storage Ring,” Proceedings of the 1997 Particle Accelerator Conference, pp. 3051-3053, 1997.
    14. T. T. Yang, M. C. Lin, Ch. Wang, L. H. Chang, S. S. Chang, W. K. Lau and C. C. Kuo, “On the Mechanical Design of a 1.5 GHz Landau Cavity,” Proceedings of the 1997 Particle Accelerator Conference, pp. 3054-3056, 1997.
    15. C. Compton, T. Bieler, B. Simkin and S. Jadhav, “Measured Properties of High RRR Niobium,” Report of National Superconducting Cyclotron Laboratory, August, 2000.
    16. R. P. Walsh, R. R. Mitchell, V. T. Toplosky and R. C. Gentzlinger, “Low-Temperature Tensile and Fracture Toughness Properties of SCRF Cavity Structural Material,” 9th Workshop on RF Superconductivity, 1999.
    17. D. K. Cheng, Field and Wave Electromagnetics, 2nd Edition, Addison-Wesley, 1989.
    18. J. D. Jackson, Classical Electrodynamics, 2nd Edition, John Wiley & Sons, 1975.
    19. H. Padamsee, “The Science and Technology of Superconducting Cavity for Accelerators,” Superconducting Science and Technology, Vol. 14, pp. 28-51, 2001.
    20. H. Padamsee, “Review of Experience with HOM Damped Cavities,” Report of SRF 9802612-04, Laboratory of Nuclear Studies, Cornell University, Ithaca, New York, 1998.
    21. S.W. Van Sciver, Helium Cryogenics, Plenum Press, New York, 1986.
    22. T. Flynn, Cryogenic Engineering, Marcel Dekker, New York, 1997.
    23. M. C. Lin, M. K. Yeh, F. S. Kao, Ch. Wang and L. H. Chang, “Thermal and Pressure Effects on the Electromagnetic Resonant Frequency of a Superconducting Shell Cavity,” Proceeding of the 26th National Conference on Applied Mechanics, paper ID O003, 2002.
    24. M. C. Lin, Ch. Wang, L. H. Chang, S. H. Luo and M. K. Yeh, “Effects of Material Properties on Resonance Frequency of a CESR-III Type 500 MHz SRF Cavity,” Proceedings of the 2003 Particle Accelerator Conference, pp. 1371-1373, 2003.
    25. M. K. Yeh, M. C. Lin, H. Y. Kuo, and Ch. Wang, “ Application of Multi-Physics Design of a Superconducting Radio-frequency Cavity,” IEEE Transactions on Applied Superconductivity, Vol. 23, Issue 3, Part 2, paper no. 3500405, 2013.
    26. M. H. Tsai, M. C. Lin, Ch. Wang, L. L. Han, T. T. Tsung and T. Furuya, “Structural Reinforcement of a Superconducting Radio-Frequency Cavity,” IEEE Transactions on Applied Superconductivity, Vol. 23, Issue 3, Part 2, paper no. 3500105, 2013.
    27. M. C. Lin, C. Wang, M. H. Chang, F. T. Chung, M. S. Yeh, Y. H. Lin, L. J. Chen, M. H. Tsai, T. T. Yang, C. H. Lo, T. C. Yu, L. H. Chang, F. Z. Hsiao, H. H. Tsai, W. S. Chiou, H. C. Li and T. F. Lin, “Operational Characteristics of the 200-m Flexible Cryogenic Transfer System,” Journal of Superconductivity and Novel Magnetism, Vol. 26, pp. 1479-1483, 2013.
    28. 黃進芳(2005),微波工程,台北:五南。
    29. A. V. Kudrin and E. Y. Petrov, “Cylindrical Electromagnetic Waves in a Nonlinear Nondispersive Medium: Exact Solutions of the Maxwell Equations,” Journal of Experimental and Theoretical Physics, 110, pp. 537-548, March, 2010.
    30. J. Chakrabarty, Theory of Plasticity, Butterworth-Heinemann, UK, 2006.
    31. ANSYS Release 12.1, ANSYS, Inc., PA, 2009.
    32. 郭泓毅,超導共振腔體之結構變形對其內部電磁場特性之影響,碩士論文,國立清華大學動力機械工程學系,新竹,台灣,2013。
    33. 呂旼儒,超導共振腔體中央直線段長度對電磁場特性之影響,碩士論文,國立清華大學動力機械工程學系,新竹,台灣,2014 。
    34. R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed, John Wiley & Sons, Inc., Danvers, 2002.
    35. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Ins.
    36. 林子淵,共振腔受軸向負載下結構彈塑性變形之調整高頻電磁場共振頻率之研究,碩士論文,國立清華大學動力機械工程學系,新竹,台灣,2016。
    37. N. J. Simon, E. S. Drexler and R. P. Reed, Properties of Copper and Copper Alloys at Cryogenic Temperatures, United States Government Publishing Office, 1992.
    38. P. Reed, Materials at Low Temperatures, ASM International, 1983.
    39. http://www.matweb.com/,引用時間:2017/04/28。
    40. P. P. Pal-Val, V. D. Natsik, and L. N. Pal-Val, “Dynamic Elastic Moduli of Niobium at Low Temperatures: Their Temperature Dependence in the Normal State, the Influence of the Superconducting Transition, and Dislocation Effects,” Low Temperature Physics, Vol. 32, pp. 227-247, 2006.

    QR CODE