研究生: |
張光德 Truong, Quang Duc |
---|---|
論文名稱: |
Synthesis and characterization of visible light responsive titanium dioxide from titanium oxalate complex and their photocatalytic study 經由草酸鈦錯合物製備的具可見光反應的二氧化鈦光觸媒之合成、光反應效率以及鑑定 |
指導教授: |
凌永健
Ling, Yong-Chien |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 135 |
中文關鍵詞: | titanium dioxide 、visible light response 、titanium oxalate complex 、photocatalyst |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This dissertation includes the review on recent progress of water-soluble titanium complex and its applications for synthesis of nanoparticles titanium dioxide (TiO2). New oxalato bridged titanium complex was synthesized and its structure was determined by Raman, 13C NMR, TGA. Nanocrystalline TiO2 powders were prepared from titanium oxalate complex by various methods. Anatase and rutile phase TiO2 could be selectively synthesized by tailoring the pH of medium. Anatase/brookite composite were obtained by hydrothermal treatment of titanium complex solution at high pH. FeTiO3/TiO2 composite was synthesized by chemical route using titanium oxalate. Crystalline phase and composition of the mixtures were characterized by XRD and Raman analysis. Effect of synthesis condition to morphology of particles was identified by SEM and TEM. The optical property was characterized by diffuse reflectance spectroscopy. The obtained particles are highly visible light absorption and their photocatalytic activity was evaluated by formic acid degradation and photoreduction of carbon dioxide. The highest activity corresponded to the powder consisting of two crystalline phase. By using both oxidation and reduction reaction, the mechanism of junction effect was clarified and demonstrated.
(1) J. H. Braun, J. Coat. Technol. 1997, 69, 59.
(2) T. Horio, Fragrance J. 1991, 19, 15.
(3) S. L. Swartz, T. R. Shrout, T. Takenaka, Am. Ceram. Soc. Bull. 1997, 76, 59.
(4) S. L. Swartz, T. R. Shrout, T. Takenaka, Am. Ceram. Soc. Bull. 1997, 76, 51.
(5) A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735.
(6) M. Schneider, A. Baiker, A. Catal. Rev. Sci. Eng. 1995, 37, 515.
(7) Y. Zheng, E. Shi, Z. Chen, W. Li, X. Hu, J. Chem. 2001, 11, 1547.
(8) H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, S. Yanagida, J. Chem. 2001, 11, 1694.
9. H. Kominami, Y. Ishi, M. Kohno, S. Konishi, Y. Kera, B. Ohtani, Catal. Lett. 2003, 91, 41
10. S. Yin, T. Sato, J. Photochem. Photobio. A Chem. 2004, 163, 1.
11. T. Yamoto, Y. Wada, H. Yin, T. Sakata, H. Mori, S. Yanagida, Chem. Lett. 2002, 31, 96.
12. H. Cheng, J. M. Zhenguo, L. Qi, Chem. Mater. 1995, 7, 663
13. A. Potter, C. Chneac, E. Trone, L. Mazerolles, J. P. Jolivet, J. Mater. Chem. 2001, 11, 1116
14. W. E. Rhine, R. B. Hallock, W. M. David, W. Wongng, Chem. Mater. 1992, 4, 1208.
(15) M. Kakihana, J. Sol-Gel Sci. Technol. 1996, 6, 7.
(16) J. Muhlerbach, K. Muller, G. Schwarzenbach, Inorg. Chem. 1970, 9, 2381.
(17) S. Vandergijp, L. Winnubst, H. Verweij, J. Am. Ceram. Soc. 1999, 82, 1175.
(18) W. P. Griffith, T. D. Wickins, J. Chem. Soc. A 1967, 590.
(19) D. Schwarzenbach, Inorg. Chem. 1970, 9, 2391.
(20) M. K. Chaudhuri, S. K. Ghosh, Inorg. Chem. 1986, 25, 168.
21. M. Kakihana, M. Tada, M. Shiro, V. Petrrykin, M. Osada, Y. Nakamura, Inorg. Chem. 2001, 40, 891.
22. M. Kakihana, K. Tomita, V. Petrykin, M. Tada, S. Sasaki, Y. Nakamura, Inorg. Chem. 2004, 43, 4546
23. K. Tomita, V. Petrykin, M. Kobayashi, M. Shiro, M. Yoshimura, M. Kakihana, Angew. Chem. Int. Ed. 2006, 45, 2378
24. K. Tomita, M. Kobayashi, V. Petrykin, S. Yin, T. Sato, M. Yoshimura, M. Kakihana, J. Mater. Sci. 2008, 43, 2217.
25. M. Kobayashi, K. Tomita, V. Petrykin, M. Yoshimura, M. Kakihana, J. Mater. Sci. 2008, 43, 2158.
26. K. Saegusa, W. E. Rhine, and H. K. Bowen, J. Am. Ceram. Soc. 1993, 76, 1495.
27. C. Boudaren, J.P. Auffredic, M. Louer, D. Louer, Chem. Mater. 2000, 12, 2324.
28. G. M. H. Van de Velde, S. Harkema, P. J. Gellings, Inorg. Chim. Acta 1974, 11, 243.
29. A. Fester, W. Bensch, M. Tromel, Acta. Crystallogr. C 1994, 50, 850.
30. A. Mazzucchelli, Potanelli; Atti. Acad. Lincei 1908, 18, 518.
31. D. P. Kharkar, C. C. Patel, Proceedings of the Indian Academy of Sciences, Section A 1956, 44, 287.
32. Y. B. Khollam, H. S. Potdar, S. B. Deshpande, A. B. Gaikwad, Mater. Chem. Phys. 2006, 97, 295.
33. D. Krulic, N. Larabi, N. Fatouros, J. Electroana. Chem. 2005, 579, 239.
34. C. Boudaren, T. Bataille, J. P. Auffredic, D. Louer, Sol. State Sci. 2003, 5, 175.
35. P. Duran, F. Capel, D. Gutierrez, J. Tartaj, M. A. Banares, C. Mourea, J. Mater. Chem. 2001, 11, 1828.
(36) S. W. Lee, W. M. Sigmund, Chem. Commun. 2003, 780.
(37) H. Mockel, M. Geirsig, F. Willig, J. Mater. Chem. 1999, 9, 3051.
(38) J. H. Rouse, G. S. Ferguson, Ad. Mater. 2002, 14, 151.
(39) X. Y. Shi, T. Cassagneau, F. Caruso, Langmuir 2002, 18, 904.
(40) S. Baskaran, L. Song, J. Liu, Y. L. Chen, G. L. Graff, J. Am. Ceram. Soc. 1998, 81, 401.
(41) R. A. Caruso, A. Susha, F. Caruso, Chem. Mater. 2001, 13, 400.
(42) H. Nakanow, H. Nakamura, J. Am. Ceram. Soc. 2006, 89, 1455.
(43) A. Yu, G. Q. Lu, J. Drennan, I. R. Gentle, Adv. Funct. Mater. 2007, 17, 2600.
(44) C. J. Chung, J. H. Jean, J. Am. Ceram. Soc. 2008, 91, 3074.
45. M. Kobayashi, V. Petrykin, M. Kakihana, Chem. Mater. 2007, 19, 5373.
46. M. Kobayashi, V. Petrykin, M. Kakihana, J. Am. Ceram. Soc. 2009, 92, S21.
47. K. Yamamoto, K. Tomita, K. Fujita, M. Kobayashi, V. Petrykin, M. Kakihana, J. Crys. Grow. 2009, 311, 619.
48. G. Wang, Q. Wang, W. Lu, J. Li, J. Phys. Chem. B 2006, 110, 22029.