簡易檢索 / 詳目顯示

研究生: 張光德
Truong, Quang Duc
論文名稱: Synthesis and characterization of visible light responsive titanium dioxide from titanium oxalate complex and their photocatalytic study
經由草酸鈦錯合物製備的具可見光反應的二氧化鈦光觸媒之合成、光反應效率以及鑑定
指導教授: 凌永健
Ling, Yong-Chien
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 135
中文關鍵詞: titanium dioxidevisible light responsetitanium oxalate complexphotocatalyst
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This dissertation includes the review on recent progress of water-soluble titanium complex and its applications for synthesis of nanoparticles titanium dioxide (TiO2). New oxalato bridged titanium complex was synthesized and its structure was determined by Raman, 13C NMR, TGA. Nanocrystalline TiO2 powders were prepared from titanium oxalate complex by various methods. Anatase and rutile phase TiO2 could be selectively synthesized by tailoring the pH of medium. Anatase/brookite composite were obtained by hydrothermal treatment of titanium complex solution at high pH. FeTiO3/TiO2 composite was synthesized by chemical route using titanium oxalate. Crystalline phase and composition of the mixtures were characterized by XRD and Raman analysis. Effect of synthesis condition to morphology of particles was identified by SEM and TEM. The optical property was characterized by diffuse reflectance spectroscopy. The obtained particles are highly visible light absorption and their photocatalytic activity was evaluated by formic acid degradation and photoreduction of carbon dioxide. The highest activity corresponded to the powder consisting of two crystalline phase. By using both oxidation and reduction reaction, the mechanism of junction effect was clarified and demonstrated.


    Chapter 1 Introduction.................................................................................1 1.1. Titanium dioxide polymorphs………………………….……………….1 1.2. Water-soluble titanium complex……………………...………………...6 1.2.1. Introduction…………………………………………………………...6 1.2.2. Titanium oxalate complex…………………………………………...11 1.2.3. Synthesis of titanium complex………………………………………13 1.2.4. Application of titanium complex…………………………………….14 1.3. The purpose of this study………………………………………..…….21 Chapter 2 Experiment……………………………………………………23 2.1. Chemicals…………………………………………………….………..23 2.2. Synthesis of titanium oxalate complex………………………………...24 2.3. Thermal treatment synthesis of nanocrystalline TiO2 from titanium oxalate complex……………………………………………………..……...25 2.4. Microwave-hydrothermal synthesis of nanocrystalline TiO2 using titanium oxalate complex……………………………………………..……26 2.5. Preparation of nanospherical crystalline TiO2 based on titanium complex and cationic surfactant……………………………………………27 2.6. Selective synthesis of nanocrystalline using titanium oxalate complex by hydrothermal method...………………………………………………….....28 2.7. Direct synthesis of bicrystal of anatase/brookite titanium oxides by hydrothermal method………………………………………………………29 2.8. One-step synthesis of FeTiO3/TiO2 composites using titanium oxalate complex………………………………………………………………….....30 2.9. Characterization method……………………………………………….31 2.10. Photocatalytic activities evualuation using formic degradation reaction……………………………………………………………………..32 2.11. Photocatalytic activities evaluation using carbon dioxide reduction reaction……………………………………………………………………..34 Chapter 3 Results and discussion.…...…………………………………..37 3.1. Structure of oxalate bridged titanium complex………………………..37 3.2. Thermal treatment synthesis of titanium dioxide from titanium oxalate complex and its photocatalytic activity…………………………………….41 3.3. Rapid synthesis of nanocrystalline titanium dioxide from titanium oxalate complex by a microwave hydrothermal process…………………...51 3.4. Preparation of spherical titanium dioxide base on titanium complex and cationic surfactant and theirs photocatalytic activity…................................61 3.5. Hydrothermal synthesis and photocatalytic activity of anatase and rutile TiO2 using titanium oxalate complex……………………………................70 3.6. Photocatalytic reduction of CO2 using visible light responsive bicrystalline anatase/brookite titanium oxides……………………………..94 3.7. Hydrothermal synthesis FeTiO3/TiO2 nanocomposite and its photocatalytic activity under visible light irradiation………………..........108 3.8. Discussion.…………………………………………………………...120 3.8.1. Formic acid degradation reaction…………………………………..120 3.8.2. Carbon dioxide reduction reaction………………………………....122 Chapter 4 Conclusions..............................................................................126 Supporting Figure........................................................................................127

    (1) J. H. Braun, J. Coat. Technol. 1997, 69, 59.
    (2) T. Horio, Fragrance J. 1991, 19, 15.
    (3) S. L. Swartz, T. R. Shrout, T. Takenaka, Am. Ceram. Soc. Bull. 1997, 76, 59.
    (4) S. L. Swartz, T. R. Shrout, T. Takenaka, Am. Ceram. Soc. Bull. 1997, 76, 51.
    (5) A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735.
    (6) M. Schneider, A. Baiker, A. Catal. Rev. Sci. Eng. 1995, 37, 515.
    (7) Y. Zheng, E. Shi, Z. Chen, W. Li, X. Hu, J. Chem. 2001, 11, 1547.
    (8) H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, S. Yanagida, J. Chem. 2001, 11, 1694.
    9. H. Kominami, Y. Ishi, M. Kohno, S. Konishi, Y. Kera, B. Ohtani, Catal. Lett. 2003, 91, 41
    10. S. Yin, T. Sato, J. Photochem. Photobio. A Chem. 2004, 163, 1.
    11. T. Yamoto, Y. Wada, H. Yin, T. Sakata, H. Mori, S. Yanagida, Chem. Lett. 2002, 31, 96.
    12. H. Cheng, J. M. Zhenguo, L. Qi, Chem. Mater. 1995, 7, 663
    13. A. Potter, C. Chneac, E. Trone, L. Mazerolles, J. P. Jolivet, J. Mater. Chem. 2001, 11, 1116
    14. W. E. Rhine, R. B. Hallock, W. M. David, W. Wongng, Chem. Mater. 1992, 4, 1208.
    (15) M. Kakihana, J. Sol-Gel Sci. Technol. 1996, 6, 7.
    (16) J. Muhlerbach, K. Muller, G. Schwarzenbach, Inorg. Chem. 1970, 9, 2381.
    (17) S. Vandergijp, L. Winnubst, H. Verweij, J. Am. Ceram. Soc. 1999, 82, 1175.
    (18) W. P. Griffith, T. D. Wickins, J. Chem. Soc. A 1967, 590.
    (19) D. Schwarzenbach, Inorg. Chem. 1970, 9, 2391.
    (20) M. K. Chaudhuri, S. K. Ghosh, Inorg. Chem. 1986, 25, 168.
    21. M. Kakihana, M. Tada, M. Shiro, V. Petrrykin, M. Osada, Y. Nakamura, Inorg. Chem. 2001, 40, 891.
    22. M. Kakihana, K. Tomita, V. Petrykin, M. Tada, S. Sasaki, Y. Nakamura, Inorg. Chem. 2004, 43, 4546
    23. K. Tomita, V. Petrykin, M. Kobayashi, M. Shiro, M. Yoshimura, M. Kakihana, Angew. Chem. Int. Ed. 2006, 45, 2378
    24. K. Tomita, M. Kobayashi, V. Petrykin, S. Yin, T. Sato, M. Yoshimura, M. Kakihana, J. Mater. Sci. 2008, 43, 2217.
    25. M. Kobayashi, K. Tomita, V. Petrykin, M. Yoshimura, M. Kakihana, J. Mater. Sci. 2008, 43, 2158.
    26. K. Saegusa, W. E. Rhine, and H. K. Bowen, J. Am. Ceram. Soc. 1993, 76, 1495.
    27. C. Boudaren, J.P. Auffredic, M. Louer, D. Louer, Chem. Mater. 2000, 12, 2324.
    28. G. M. H. Van de Velde, S. Harkema, P. J. Gellings, Inorg. Chim. Acta 1974, 11, 243.
    29. A. Fester, W. Bensch, M. Tromel, Acta. Crystallogr. C 1994, 50, 850.
    30. A. Mazzucchelli, Potanelli; Atti. Acad. Lincei 1908, 18, 518.
    31. D. P. Kharkar, C. C. Patel, Proceedings of the Indian Academy of Sciences, Section A 1956, 44, 287.
    32. Y. B. Khollam, H. S. Potdar, S. B. Deshpande, A. B. Gaikwad, Mater. Chem. Phys. 2006, 97, 295.
    33. D. Krulic, N. Larabi, N. Fatouros, J. Electroana. Chem. 2005, 579, 239.
    34. C. Boudaren, T. Bataille, J. P. Auffredic, D. Louer, Sol. State Sci. 2003, 5, 175.
    35. P. Duran, F. Capel, D. Gutierrez, J. Tartaj, M. A. Banares, C. Mourea, J. Mater. Chem. 2001, 11, 1828.
    (36) S. W. Lee, W. M. Sigmund, Chem. Commun. 2003, 780.
    (37) H. Mockel, M. Geirsig, F. Willig, J. Mater. Chem. 1999, 9, 3051.
    (38) J. H. Rouse, G. S. Ferguson, Ad. Mater. 2002, 14, 151.
    (39) X. Y. Shi, T. Cassagneau, F. Caruso, Langmuir 2002, 18, 904.
    (40) S. Baskaran, L. Song, J. Liu, Y. L. Chen, G. L. Graff, J. Am. Ceram. Soc. 1998, 81, 401.
    (41) R. A. Caruso, A. Susha, F. Caruso, Chem. Mater. 2001, 13, 400.
    (42) H. Nakanow, H. Nakamura, J. Am. Ceram. Soc. 2006, 89, 1455.
    (43) A. Yu, G. Q. Lu, J. Drennan, I. R. Gentle, Adv. Funct. Mater. 2007, 17, 2600.
    (44) C. J. Chung, J. H. Jean, J. Am. Ceram. Soc. 2008, 91, 3074.
    45. M. Kobayashi, V. Petrykin, M. Kakihana, Chem. Mater. 2007, 19, 5373.
    46. M. Kobayashi, V. Petrykin, M. Kakihana, J. Am. Ceram. Soc. 2009, 92, S21.
    47. K. Yamamoto, K. Tomita, K. Fujita, M. Kobayashi, V. Petrykin, M. Kakihana, J. Crys. Grow. 2009, 311, 619.
    48. G. Wang, Q. Wang, W. Lu, J. Li, J. Phys. Chem. B 2006, 110, 22029.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE