研究生: |
何良璟 He, Liang-Ching |
---|---|
論文名稱: |
反鐵磁白金錳/鐵磁系統中的異常自旋軌道矩磁矩翻轉 Anomalous magnetization switching behaviors induced by spin-orbit torque in antiferromagnetic PtMn/FM systems |
指導教授: |
賴志煌
Lai, Chih-Huang |
口試委員: |
林秀豪
Lin, Hsiu Hau 謝嘉民 Shieh, Jia Min |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 反鐵磁 、自旋軌道矩 |
外文關鍵詞: | antiferromagnet, spin-orbit torque |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類的科技發展離不開資料儲存,過往使用的隨機存取記憶體如DRAM、SRAM皆為揮發性記憶體,因為此特性這些記憶體的運作需要不間斷的提供電源,在車載電腦、行動裝置、物聯網等科技蓬勃發展下,這樣的特性成為最大的缺點。
磁性記憶體具有高讀寫速度與非揮發性的特點,因此被視為下一世代記憶體的翹楚。本篇論文基於自旋軌道矩磁性記憶體的基礎,透過含有非磁性重金屬的反鐵磁作為自旋電流來源進行一系列的研究。過去水平磁矩是否翻轉的量測需要將元件做成磁穿隧接面或使用磁光柯爾效應,但兩者都將使量測時間與製造成本上升,本論文提出利用異向性磁阻量測水平磁矩的翻轉,此方法快速且所需儀器成本顯著降低,替後續水平磁矩翻轉量測提供另一種量測方式。同時在反鐵磁相的白金錳/鐵磁系統中,我們發現了一種異常的自旋軌道矩翻轉行為,當反鐵磁態白金錳成相後我們可以使用正負電流翻轉磁矩,相比於過去的結果,這是一個十分特別的翻轉行為,為此我們設計一系列實驗來研究此現象的起因與可能性。
Data storage is the foundation of the revolution of human technology. Most of the previous random access memory we used are volatile, such as DRAM, and SRAM. They are called volatile memory because electricity is needed while working. This characteristic becomes the most significant disadvantage as car computers, mobile devices, and IoT attracts more and more attention.
Magnetic random access memory is a good candidate because of its high speed and non-volatile feature. This thesis is based on spin-orbit torque MRAM. We used heavy metal-based antiferromagnetic PtMn as a spin current source to start our research. It was hard to measure in-plane magnetic moment previously. Magnetic tunneling junctions or magneto Kerr effect are needed. However, these two methods take enormous time and cost a lot. We proposed a new method based on anisotropic magnetoresistance to measure in-plane magnetic moment switching. AMR measurements are much easier and cheaper than those used before. An anomalous spin-orbit torque switching behavior was discovered at the same time. As long as our PtMn phase transformed into an antiferromagnetic phase, we could switch the magnetization by both positive and negative currents, which are quite different from others’ results. We designed a series of experiments to dig out the possible reason.
1 Slonczewski, J. C. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials 159, L1-L7, doi:https://doi.org/10.1016/0304-8853(96)00062-5 (1996).
2 Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B 54, 9353-9358, doi:10.1103/PhysRevB.54.9353 (1996).
3 Endoh, T. & Honjo, H. A Recent Progress of Spintronics Devices for Integrated Circuit Applications. Journal of Low Power Electronics and Applications 8, 44, doi:10.3390/jlpea8040044 (2018).
4 Apalkov, D. et al. Spin-transfer torque magnetic random access memory (STT-MRAM). J. Emerg. Technol. Comput. Syst. 9, Article 13, doi:10.1145/2463585.2463589 (2013).
5 Hall, E. H. On a New Action of the Magnet on Electric Currents. American Journal of Mathematics 2, 287-292, doi:10.2307/2369245 (1879).
6 Dyakonov, M. & Perel, V. Possibility of Orienting Electron Spins with Current. Soviet Journal of Experimental and Theoretical Physics Letters 13, 467 (1971).
7 Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Physics Letters A 35, 459-460, doi:https://doi.org/10.1016/0375-9601(71)90196-4 (1971).
8 Hirsch, J. E. Spin Hall Effect. Physical Review Letters 83, 1834-1837, doi:10.1103/PhysRevLett.83.1834 (1999).
9 Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the Spin Hall Effect in Semiconductors. Science 306, 1910-1913, doi:10.1126/science.1105514 (2004).
10 Inoue, J. & Ohno, H. Taking the Hall Effect for a Spin. Science 309, 2004-2005, doi:10.1126/science.1113956 (2005).
11 Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Reviews of Modern Physics 87, 1213-1260, doi:10.1103/RevModPhys.87.1213 (2015).
12 Kondou, K., Sukegawa, H., Mitani, S., Tsukagoshi, K. & Kasai, S. Evaluation of Spin Hall Angle and Spin Diffusion Length by Using Spin Current-Induced Ferromagnetic Resonance. Applied Physics Express 5, 073002, doi:10.1143/apex.5.073002 (2012).
13 Mosendz, O. et al. Quantifying Spin Hall Angles from Spin Pumping: Experiments and Theory. Physical Review Letters 104, 046601, doi:10.1103/PhysRevLett.104.046601 (2010).
14 Bychkov, Y. A. & Rashba, É. I. Properties of a 2D electron gas with lifted spectral degeneracy. Soviet Journal of Experimental and Theoretical Physics Letters 39, 78 (1984).
15 Mihai Miron, I. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Materials 9, 230-234, doi:10.1038/nmat2613 (2010).
16 Zhao, W. & Prenat, G. Spintronics-based computing. (Springer, 2015).
17 Shpiro, A., Levy, P. M. & Zhang, S. Self-consistent treatment of nonequilibrium spin torques in magnetic multilayers. Physical Review B 67, 104430, doi:10.1103/PhysRevB.67.104430 (2003).
18 Zhang, S., Levy, P. M. & Fert, A. Mechanisms of Spin-Polarized Current-Driven Magnetization Switching. Physical Review Letters 88, 236601, doi:10.1103/PhysRevLett.88.236601 (2002).
19 Gilbert, T. L. A phenomenological theory of damping in ferromagnetic materials. IEEE Transactions on Magnetics 40, 3443-3449, doi:10.1109/TMAG.2004.836740 (2004).
20 Zhu, D. & Zhao, W. Threshold Current Density for Perpendicular Magnetization Switching Through Spin-Orbit Torque. Physical Review Applied 13, 044078, doi:10.1103/PhysRevApplied.13.044078 (2020).
21 Wang, Z. et al. Modulation of field-like spin orbit torque in heavy metal/ferromagnet heterostructures. Nanoscale 12, 15246-15251, doi:10.1039/D0NR02762F (2020).
22 Li, Y., Edmonds, K. W., Liu, X., Zheng, H. & Wang, K. Manipulation of Magnetization by Spin–Orbit Torque. Advanced Quantum Technologies 2, 1800052, doi:https://doi.org/10.1002/qute.201800052 (2019).
23 Liu, Y.-T. et al. Anatomy of Type-x Spin-Orbit-Torque Switching. Physical Review Applied 16, 024021, doi:10.1103/PhysRevApplied.16.024021 (2021).
24 Fukami, S., Anekawa, T., Zhang, C. & Ohno, H. A spinقÄ…orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nature Nanotechnology 11, 621-625, doi:10.1038/nnano.2016.29 (2016).
25 Yu, G. et al. Current-driven perpendicular magnetization switching in Ta/CoFeB/[TaOx or MgO/TaOx] films with lateral structural asymmetry. Applied Physics Letters 105, 102411, doi:10.1063/1.4895735 (2014).
26 Solenov, D., Mozyrsky, D. & Martin, I. Chirality Waves in Two-Dimensional Magnets. Physical review letters 108, 096403, doi:10.1103/PhysRevLett.108.096403 (2012).
27 Hu, A.-Y. & Wang, H.-Y. The exchange interaction values of perovskite-type materials EuTiO3 and EuZrO3. Journal of Applied Physics 116, 193903, doi:10.1063/1.4902167 (2014).
28 Park, I. J. et al. Strain control of the Néel vector in Mn-based antiferromagnets. Applied Physics Letters 114, 142403, doi:10.1063/1.5093701 (2019).
29 Ladwig, P. et al. Paramagnetic to antiferromagnetic phase transformation in sputter deposited Pt-Mn thin films. Journal of Applied Physics 94, doi:10.1063/1.1587266 (2003).
30 DuttaGupta, S. et al. Spin-orbit torque switching of an antiferromagnetic metallic heterostructure. Nature Communications 11, 5715, doi:10.1038/s41467-020-19511-4 (2020).
31 Meiklejohn, W. H. & Bean, C. P. New Magnetic Anisotropy. Physical Review 102, 1413-1414, doi:10.1103/PhysRev.102.1413 (1956).
32 Nogués, J. & Schuller, I. K. Exchange bias. Journal of Magnetism and Magnetic Materials 192, 203-232, doi:https://doi.org/10.1016/S0304-8853(98)00266-2 (1999).
33 Thomson, W. XIX. On the electro-dynamic qualities of metals:—Effects of magnetization on the electric conductivity of nickel and of iron. Proceedings of the Royal Society of London 8, 546-550, doi:10.1098/rspl.1856.0144 (1857).
34 McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Transactions on Magnetics 11, 1018-1038, doi:10.1109/TMAG.1975.1058782 (1975).
35 Li, T., Zhang, L. & Hong, X. Anisotropic magnetoresistance and planar Hall effect in correlated and topological materials. Journal of Vacuum Science & Technology A 40, 010807, doi:10.1116/6.0001443 (2022).
36 Cui, Y. et al. Anisotropic magnetoresistance as evidence of spin-momentum inter-locking in topological Kondo insulator SmB6 nanowires. Nanoscale 13, 20417-20424, doi:10.1039/D1NR07047A (2021).
37 Waser, R. & Aono, M. in Nanoscience and Technology 158-165 (Co-Published with Macmillan Publishers Ltd, UK, 2009).
38 Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nature Materials 15, 535-541, doi:10.1038/nmat4566 (2016).
39 Lee, J. M. et al. Oscillatory spin-orbit torque switching induced by field-like torques. Communications Physics 1, 2, doi:10.1038/s42005-017-0002-3 (2018).
40 Qiu, Z. Q. & Bader, S. D. Surface magneto-optic Kerr effect. Review of Scientific Instruments 71, 1243-1255, doi:10.1063/1.1150496 (2000).
41 Ou, Y., Shi, S., Ralph, D. C. & Buhrman, R. A. Strong spin Hall effect in the antiferromagnet PtMn. Physical Review B 93, 220405, doi:10.1103/PhysRevB.93.220405 (2016).
42 Yang, C.-Y. et al. Effect of interfacial spin configuration on y-type spin–orbit torque switching in an antiferromagnetic heavy alloy/ferromagnet bilayer. Applied Physics Letters 118, 102403, doi:10.1063/5.0039138 (2021).
43 Liu, Y.-T. et al. Determination of Spin-Orbit-Torque Efficiencies in Heterostructures with In-Plane Magnetic Anisotropy. Physical Review Applied 13, 044032, doi:10.1103/PhysRevApplied.13.044032 (2020).