簡易檢索 / 詳目顯示

研究生: 賴柏光
Lai, Po-Kuang
論文名稱: 應用紅色發光二極體之水下可見光通訊收發機系統
Design and Implementation of an Underwater Wireless Optical Communication Transceiver Using Red LED
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員: 蔡佩芸
Tsai, Pei-Yun
黃元豪
Huang, Yuan-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 79
中文關鍵詞: 紅色發光二極體水下可見光通訊
外文關鍵詞: UWOC
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,設計並實現了一個水下可見光無線通訊(Underwater
    Wireless Optical Communication)收發機。整體系統設計架構基於直流偏置光
    正交分頻多工(DCO-OFDM)並搭配紅色發光二極體(LED)與光偵測二極體(PD),能
    夠在一定傳輸距離內,不論傳輸環境為空氣或水中,皆能夠達到最高每秒2 千4
    百萬位元的傳輸速率。
    水下可見光無線通訊系統與工研院(ITRI)一同合作完成,工研院主要負責前
    端模組、乙太網路、數位類比轉換器以及燈具等部分,本篇論文內容則針對基頻
    收發機電路的設計以及水下通道模擬這兩部分。收發機的設計採用16 正交振幅
    調變技術(16-QAM),總共使用1024 個子載波以及長度為其1/16 的循環字首
    (Cyclic Prefix)。在接收端支援訊號起始點的偵測,並利用數位自動增益控制
    (Digital Automatic Gain Control) 技術,降低接收訊號可能因為傳輸距離改
    變而大幅影響傳輸品質的問題,增加系統設置的彈性。除此之外,接收端也針對
    收發兩端取樣時脈差異(Sampling Clock Offset)造成的訊號相位偏轉進行補償,並根據估測之通道響應結果使用與一階等化器相比,效能更加優化的適應性最小均方等化器(Least Mean Square Equalizer)補償通道影響。通道模擬部分的分析採用蒙地卡羅方法(Monte Carlo Method),根據給定的參數數值,模擬光粒子在水下通道的傳輸情況以求得訊號強度在不同水質下的訊號衰減幅度,及其對應
    的通道脈衝響應(Impulse Response),得到了水下通到在濁度不高的情況下受符
    號間干擾程度較小(Inter-symbol Interference),並將模擬結果做為接收端演
    算法改良的依據。
    經實驗結果證實,設計與實現的收發機不論在通道是由空氣或水組成的情況
    下都能夠透過紅色發光二極體順利傳輸有效訊號,最高傳輸速率可達每秒2 千4
    百萬位元,在傳輸影片的測試中能夠正確無誤的支援720p 高解析度影片傳輸,
    並且在一定的範圍內隨意變更傳輸距離都不會影響影片播放的順暢度。


    In this thesis, an underwater wireless optical communication (UWOC) transceiver is designed and implemented. The proposed system is based on the DC-bias optical orthogonal frequency division multiplexing (DCO-OFDM) using red LED and PD. The highest data rate achievable is 24 Mbps within a short range no matter transmitted signal in the air or underwater.
    The proposed UWOC transceiver is in cooperation with Industrial Technology Research Institute (ITRI). ITRI is responsible for front-end modules, Ethernet connection, analog-todigital
    converter/digital-to-analog converter (ADC/DAC) and the optoelectronic devices. In this thesis, the design and implementation of the baseband transceiver and the channel modeling for underwater environment are focused. The design of the transceiver applied 16 quadrature amplitude modulation (16-QAM), IFFT/FFT with 1024 sub-carriers and a CP length equals to 1/16 of the FFT size. Furthermore, with the starting point detection at the receiver part, a digital automatic gain control (DAGC) is designed and implemented to alleviate the signal fluctuation caused by the variation of transmission distance. In addition, SCO compensation and channel equalization are employed at the receiver. An adaptive least mean square (LMS) equalizer instead of traditional least square (LS) equalizer is designed and implemented to achieve better performance. For the channel modeling for underwater scenarios, Monte Carlo method is adopted to simulate the propagation of photons underwater based on
    the given parameters. Finally, the signal attenuation and the channel impulse response are derived according to the simulation. The result of the simulation exhibits that inter-symbol interference (ISI) is not severe unless in high turbidity condition.
    Based on the verification and evaluation on field programmable gate array (FPGA), the proposed transceiver is capable to transmit data using red LED either in the air or underwater. A 720p high definition video can be displayed at data rate 24 Mbps without any error. Furthermore, within certain transmission range, the video display remains steady and stable.

    Abstract Chapter 1 .......... 1 Chapter 2 .......... 7 Chapter 3 .......... 25 Chapter 4 .......... 55 Chapter 5 .......... 65 Chapter 6 .......... 73

    [1] B. Truax, Acoustic Communication. Norwood, N.J.: Ablex Pub. Corp., 2001.
    [2] M. Stojanovic, “Recent advances in high-speed underwater acoustic communications,” IEEE Journal of Oceanic Engineering, vol. 21, pp. 125–136, Apr. 1996.
    [3] J. R. Apel, Principles of Ocean Physics. Academic Press, 1988.
    [4] P. Lacovara, “High-Bandwidth Underwater Communications,” Marine Technology Society Journal, vol. 42, pp. 93–102, Jul. 2008.
    [5] J. Muncan and R. Tsenkova, “Aquaphotomics - From Innovative Knowledge to Integrative Platform in Science and Technology,” Molecules, vol. 24, Jul. 2019.
    [6] H. Kaushal and G. Kaddoum, “Underwater Optical Wireless Communication,” IEEE Access, vol. 4, pp. 1518–1547, Apr. 2016.
    [7] D. J. Segelstein, “The Complex Refractive Index of Water.” Master’s thesis, University of Missouri-Kansas City, 1981.
    [8] X. Che, I. Wells, G. Dickers, P. Kear, and X. Gong, “Re-evaluation of RF electromagnetic communication in underwater sensor networks,” IEEE Communications Magazine, vol. 48, pp. 143–151, Dec. 2010.
    [9] H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Optics Express, vol. 23, pp. 20 743–20 748, Jul. 2015.
    [10] I.-C. Lu and Y.-L. Liu, “205 Mb/s LED-Based Underwater Optical Communication Employing OFDM Modulation,” in 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans, pp. 1–4.
    [11] Y.-F. Huang, C.-T. Tsai, Y.-C. Chi, D.-W. Huang, and G.-R. Lin, “Filtered Multicarrier OFDM Encoding on Blue Laser Diode for 14.8-Gbps Seawater Transmission,” Journal of Lightwave Technology, vol. 36, pp. 1739–1745, Dec. 2017.
    [12] F. Jasman and R. J. Green, “Monte Carlo simulation for underwater optical wireless communications,” in 2013 2nd Int. Workshop on Optical Wireless Communications (IWOW), pp. 1–5.
    [13] T. Liu, H. Zhang, and J. Song, “Monte-Carlo simulation-based characteristics of underwater scattering channel,” Optical Engineering, vol. 56, pp. 1–4, Jul. 2017.
    [14] L. Liang, J. Shi, L. Chen, and S. Xu, “Implementation of Automatic Gain Control in OFDM digital receiver on FPGA,” in 2010 Int. Conf. On Computer Design and Applications, pp. 1–4.
    [15] T. Lang, Z. Li, F. Lu, Z. Dong, L. Wang, C. Li, F. Zhang, G. Chen, and A. Wang, “LED Based Visible Light Communication and Positioning Technology and SoCs,” Oct. 2018, pp. 1–4.
    [16] S. Arnon, “Underwater optical wireless communication network,” Optical Engineering, vol. 49, pp. 1–6, Jan. 2010.
    [17] N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, “Underwater optical wireless communications, networking, and localization: A survey,” Feb. 2018. [Online]. Available: https://arxiv.org/abs/1803.02442
    [18] L. J. Johnson, F. Jasman, R. J. Green, and M. S. Leeson, “Recent advances in underwater optical wireless communications,” Underwater Technology, vol. 32, pp. 167–175, Sep. 2014.
    [19] R. Mahon,W. Rabinovich, M. Ferraro, J. Murphy, L. Mullen, B. Cohenour, J. Muth, and L. Ziph-Schatzberg, “Underwater optical modulating retro-reflector links,” in Lasers, Sources and Related Photonic Devices, Sep. 2010, pp. 1–3.
    [20] W. C. Cox, K. F. Gray, J. A. Simpson, B. Cochenour, B. L. Hughes, and J. F. Muth, “A MEMS Blue/Green Retroreflecting Modulator for Underwater Optical Communications,”
    in OCEANS 2010 MTS/IEEE SEATTLE, pp. 1–4.
    [21] S. Tang, Y. Dong, and X. Zhang, “On Path Loss of NLOS Underwater Wireless Optical Communication Links,” in 2013 MTS/IEEE OCEANS-Bergen, pp. 1–3.
    [22] S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” Journal of the Optical Society of America A, vol. 26, pp. 530–539, Mar. 2009.
    [23] A. Jain, R. K. Bahl, and A. Banik, “Demonstration of RZ-OOK modulation scheme for high speed optical data transmission,” in 2014 Eleventh Int. Conf. on Wireless and Optical Communications Networks (WOCN), pp. 1–5.
    [24] X. Li, N. Bamiedakis, X. Guo, J. J. D. McKendry, E. Xie, R. Ferreira, E. Gu, M. D. Dawson, R. V. Penty, and I. H. White, “Wireless Visible Light Communications Employing Feed-Forward Pre-Equalization and PAM-4 Modulation,” Journal of Lightwave
    Technology, vol. 34, pp. 2049–2055, Apr. 2016.
    [25] M. Bhardwaj, A. Gangwar, and D. Soni, “A Review on OFDM: Concept, Scope and its Applications,” IOSR Journal of Mechanical and Civil Engineering, vol. 1, pp. 7–11, May 2012.
    [26] T. Hwang, C. Yang, G. Wu, S. Li, and G. Ye Li, “A Review on OFDM: Concept, Scope and its Applications,” IEEE Transactions on Vehicular Technology, vol. 58, pp. 1673–1694, May 2009.
    [27] C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters. Academic Press, 1994.
    [28] M. V. Jamali, P. Khorramshahi, A. Tashakori, A. Chizari, S. Shahsavari, S. AbdollahRamezani, M. Fazelian, S. Bahrani, and J. A. Salehi, “Statistical distribution of intensity fluctuations for underwater wireless optical channels in the presence of air bubbles,” in 2016 Iran Workshop on Communication and Information Theory (IWCIT), pp. 1–6.
    [29] H. M. Oubei, E. Zedini, R. T. ElAfandy, A. Kammoun, T. K. Ng, M. Alouini, and B. S. Ooi, “EfficientWeibull channel model for salinity induced turbulent underwater wireless optical communications,” in 2017 Opto-Electronics and Communications Conf. (OECC) and Photonics Global Conf. (PGC), pp. 1–2.
    [30] H. M. Oubei, E. Zedini, R. T. ElAfandy, A. Kammoun, M. Abdallah, T. K. Ng, M. Hamdi, M.-S. Alouini, and B. S. Ooi, “Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems,”
    Optics Letters, vol. 42, pp. 2455–2458, Jul. 2017.
    [31] S. Karp, “Optical Communications Between Underwater and Above Surface (Satellite) Terminals,” IEEE Transactions on Communications, vol. 24, pp. 66–81, Jan. 1976.
    [32] M. B. Callaham, “Submarine communications,” IEEE Communications Magazine, vol. 19, pp. 16–25, Nov. 1981.
    [33] C. Shen, X. Sun, G. Liu, K.-T. Ho, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Going beyond 10-meter, Gbit/s underwater optical wireless communication links based on visible lasers,” in 2017 Opto-Electronics and Communications Conf. (OECC) and Photonics
    Global Conf. (PGC), pp. 1–3.
    [34] P. Wang, H. Chen, X. Liu, S. Yi, X. Zhou, E. Gu, K. Huang, L. Zheng, R. Liu, X. Cui, and P. Tian, “A GaN Micro-LED Based Underwater Wireless Optical Communication Subjected to Sea Salt, Maalox and Chlorophyll,” in 2018 15th China Int. Forum on Solid
    State Lighting: Int. Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), pp. 1–3.
    [35] H. M. Oubei, J. R. Dur´an, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in 2016
    Conf. on Lasers and Electro-Optics (CLEO), pp. 1–2.
    [36] S. Hessien, S. C. Tokg¨oz, N. Anous, A. Boyacı, M. Abdallah, and K. A. Qaraqe, “Experimental Evaluation of OFDM-Based Underwater Visible Light Communication System,” IEEE Photonics Journal, vol. 10, pp. 1–13, Oct. 2018.
    [37] Y.-J.Wang, “Design and Implementation of a DCO-OFDM Transceiver for Visible Light Communications,” Master’s thesis, National Tsing Hua University, 2019.
    [38] C.-J. Chiang, “Comparison of the Performance of MC-CDMA and MC-DS-CDMA under Multipath Fading Channel,” Master’s thesis, National Chiao Tung University, 2004.
    [39] S. Haykin, Adaptive Filter Theory. Prentice Hall, 2002.
    [40] J. Cox, William Charles, “Simulation, modeling, and design of underwater optical communication systems,” Ph.D. dissertation, North Carolina State University, 2012.
    [41] R. Leathers, T. Downes, C. Davis, and C. Mobley, “Monte carlo radiative transfer simulations for ocean optics: A practical guide,” p. 54, Sept. 2004.
    [42] C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA Journal of Optical Communications and Networking, vol. 5, no. 1, pp. 1–12, 2013.
    [43] M. D. Mckinley, K. A. Remley, M. T. Myslinski, J. Kenney, D. Schreurs, and B. Nauwelaers, “Evm calculation for broadband modulated signals.” in Automatic RF Techniques Group Conf. (ARFTG), 2004, pp. 45–52.

    QR CODE