研究生: |
呂佩瑜 Lu, Pei-Yu. |
---|---|
論文名稱: |
反應式射頻磁控濺鍍法製備 AlCrSiTi 多元氮化物薄膜 Multi-element Nitride Film of (AlCrSiTi)xN100-x by RF Reactive Magnetron Sputtering |
指導教授: |
林樹均
Lin, Su-Jien |
口試委員: |
李勝隆
Li, Sheng-Long 洪健龍 Hong, Jian-Long 張守一 Zhang, Shou-Yi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 270 |
中文關鍵詞: | 硬質薄膜 、多元氮化物薄膜 、切削測試 、田口法 、製程調控 |
外文關鍵詞: | multi-element nitride film, cutting test |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以田口法設計 AlCrSiTi 合金成分,利用真空電弧熔煉製備非等莫耳 AlCrSiTi 多元合金靶材,並以反應式射頻磁控濺鍍法鍍製多元氮化物薄膜,藉由硬度、綜合性質(H^3/(x^2×E^2 ))、氧化層厚度的因子反應分析,求得硬度最佳化成分 H,其硬度為 32 GPa;綜合性質最佳化成分W,其綜合性質為 24.2;抗氧化性最佳化成分 X,其 1000 ºC,2 h的氧化層厚度僅 92 nm。三種成分再進行最佳化鍍膜參數調整,其中H與 W最佳製程鍍膜的性質為硬度 33 GPa與綜合性質為 24.2;而X 薄膜製程最佳化的氧化層厚度僅有 81 nm。在附著性試驗當中可以發現加入自身合金中間層之後,薄膜的附著性有所提升,其中又以最佳綜合性質成分的附著性表現最佳;最佳硬度成分在磨耗試驗中有最低的磨耗速率,歸因於其出色的硬度表現;銑削試驗中以最佳綜合性質的刀腹磨耗表現最佳,在低轉速的銑削條件下,最佳綜合性質的撞擊區深度僅有 175 µm,最大刀腹磨耗僅 100 µm;在高轉速的銑削條件下,其撞擊區深度為 216 µm,最大刀腹磨耗僅有 71 µm,其優異的表現歸因於最佳綜合性質薄膜與工件間良好的附著性,此薄膜的表現大幅優於商用薄膜 TiN 及 TiAlN,並與 TiAlCrN 之結果相媲美。顯示本實驗之 (AlCrSiTi)100XNX 具有刀具鍍膜應用潛力。
The AlCrSiTi alloy composition was firstly designed by Taguchi method, and the non-isomolar AlCrSiTi multi-element alloy targets were prepared by vacuum arc melting, and the multi-element nitride films were deposited by reactive radio frequency magnetron sputtering. The hardness, integrate property (H^3/(x^2×E^2 )) and oxidation resistance of AlCrSiTi nitride films with different composition were investigated and then analyzed by factor effects. We got the best hardness optimized film H with a hardness of 32 GPa, the best integrate property optimized film W with a value of 24.2, and the best oxidation resistance optimized film X with an oxide thickness of only 92 nm at the oxidation condition of 1000 C, 2 h. The optimized coating parameters were adjusted for these three films. The properties of the H and W coating were still the hardness of 33 GPa and the integrate property of 24.2. The thickness of the oxide film optimized for the X film process was only 81 nm. In the adhesion test, it can be found that the adhesion of the film is greatly improved after the addition of the self-alloy intermediate layer, and the adhesion of the best integrate property film is the best. The best hardness film has the lowest wear rate in the wear test. This is attributed to its excellent hardness performance. In the cutting test, the film with the best integrate property presents the lowest flank wear because of the good adhesion between thin film and cutting tool. In the condition of low revolutions per minute, the flank wear of the film with the best integrate properties was only 100 µm, which was much better than the flank wear of the cutting tools deposited with TiN and TiAlN and is comparable to that of TiAlCrN. This research demonstrates that the (AlCrSiTi)100XNX nitride films have a potential for the application of the protective hard coating on the cutting tools.
[1] Knotek, O., M. Böhmer, T. Leyendecker, and F. Jungblut, The structure and composition of Ti Zr N, Ti Al Zr N and Ti Al V N coatings. Materials Science and Engineering: A, 1988. 105: p. 481-488.
[2] Vepřek, S., The search for novel, superhard materials. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999. 17(5): p. 2401-2420.
[3] PalDey, S. and S. Deevi, Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review. Materials Science and Engineering: A, 2003. 342(1-2): p. 58-79.
[4] Hörling, A., L. Hultman, M. Odén, J. Sjölén, and L. Karlsson, Mechanical properties and machining performance of Ti1− xAlxN-coated cutting tools. Surface and Coatings Technology, 2005. 191(2-3): p. 384-392.
[5] Veprek, S., A. Niederhofer, K. Moto, T. Bolom, H.-D. Männling, P. Nesladek, G. Dollinger, and A. Bergmaier, Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a-and nc-TiSi2 nanocomposites with HV= 80 to≥ 105 GPa. Surface and Coatings Technology, 2000. 133: p. 152-159.
[6] Aouadi, S., F. Namavar, T. Gorishnyy, and S. Rohde, Characterization of TiBN films grown by ion beam assisted deposition. Surface and Coatings Technology, 2002. 160(2-3): p. 145-151.
[7] Camps, E., L. Escobar-Alarcón, I. Camps, S. Muhl, and M. Flores, Tribological characterization of TiCN coatings deposited by two crossed laser ablation plasma beams. Applied Physics A, 2013. 110(4): p. 957-961.
[8] Cheng, Y., T. Browne, B. Heckerman, and E. Meletis, Influence of the C content on the mechanical and tribological properties of the TiCN coatings deposited by LAFAD technique. Surface and Coatings Technology, 2011. 205(16): p. 4024-4029.
[9] Männling, H.-D., D. Patil, K. Moto, M. Jilek, and S. Veprek, Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides. Surface and Coatings Technology, 2001. 146: p. 263-267.
[10] 張慧紋, 以反應式直流濺鍍法製備Al-Cr-Mo-Si-Ti高熵氮化物薄膜及其性質探討, 國立清華大學碩士論文, 2005
[11] 張境芳, Al-Cr-Nb-Si-Ta高熵氮化膜之開發研究, 國立清華大學碩士論文, 2013
[12] 沈宛叡, AlCrNbSiTi高熵合金與其氮化物薄膜微結構,機械性質與高溫氧化行為之研究, 國立清華大學博士論文, 2014
[13] 翁稚惠, AlCrTaTiZr氮化物薄膜附著力與抗磨耗能力之研究, 國立清華大學碩士論文, 2006
[14] 蔡佳凌, 反應式直流磁控濺鍍法製備 (Al,Cr,Nb,Si,B,C)100-xNx 高熵薄膜之研究, 國立清華大學碩士論文, 2014
[15] 謝明曉, (AlCrNbSiTi)N薄膜田口法最佳化之研究, 國立清華大學碩士論文, 2011
[16] 賴加瀚, Al-Cr-Ta-Ti-Zr-N 多元氮化物薄膜之製備與性質研究,國立清華大學博士論文, 2006
[17] 鄭耿豪, (AlCrTaTiZr)-Six-N多元氮化物鍍膜微結構、機械性質與高溫氧化行為之研究, 國立清華大學碩士論文, 2011
[18] 黃炳剛, AlCrNbSiTiV高熵合金及其氮化物濺鍍薄膜之研究, 國立清華大學博士論文, 2008
[19] Mattox, D., Handbook of Physical Vapor Deposition (PVD) Processing. 2014: Cambridge University Press.
[20] Liljeholm, L., Reactive sputter deposition of functional thin films. 2012: Acta Universitatis Upsaliensis.
[21] 개날연. 다양한 변형 스퍼터링 장치들. 2014; Available from: http://marriott.tistory.com/97.
[22] Martin, P.M., Handbook of deposition technologies for films and coatings: science, applications and technology. 2009: William Andrew.
[23] Kelly, P. and R. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172.
[24] Movchan, B.A. and A.V. Demchishin, Structure and Properties of Thick Condensates of Nickel, Titanium, Tungsten, Alimium Oxides, and Zirconium Dioxide in Vacuum. Fiz. Metal. Metalloved. 28: 653-60 (Oct 1969). 1969: p. Medium: X.
[25] Thornton, J.A., High rate thick film growth. Annual review of materials science, 1977. 7(1): p. 239-260.
[26] Messier, R., A. Giri, and R. Roy, Revised structure zone model for thin film physical structure. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984. 2(2): p. 500-503.
[27] Zhang, S., W. Wu, W. Chen, and S. Yang, Structural optimisation and synthesis of multilayers and nanocomposite AlCrTiSiN coatings for excellent machinability. Surface and Coatings Technology, 2015. 277: p. 23-29.
[28] Lin, J., B. Mishra, J.J. Moore, and W.D. Sproul, A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses. Surface and Coatings Technology, 2008. 202(14): p. 3272-3283.
[29] Park, I.-W., S.R. Choi, M.-H. Lee, and K.H. Kim, Effects of Si addition on the microstructural evolution and hardness of Ti–Al–Si–N films prepared by the hybrid system of arc ion plating and sputtering techniques. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2003. 21(4): p. 895-899.
[30] Tanaka, Y., N. Ichimiya, Y. Onishi, and Y. Yamada, Structure and properties of Al–Ti–Si–N coatings prepared by the cathodic arc ion plating method for high speed cutting applications. Surface and Coatings Technology, 2001. 146: p. 215-221.
[31] Chang, Y.-Y., C.-P. Chang, D.-Y. Wang, S.-M. Yang, and W. Wu, High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process. Journal of Alloys and Compounds, 2008. 461(1-2): p. 336-341.
[32] Wu, W., W. Chen, S. Yang, Y. Lin, S. Zhang, T.-Y. Cho, G.H. Lee, and S.-C. Kwon, Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools. Applied Surface Science, 2015. 351: p. 803-810.
[33] Trindade, B., A. Cavaleiro, and M.T. Vieira, The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition-Metal-Based Nanostructured Hard Films: Part II—Carbides, in Nanostructured Coatings. 2006, Springer. p. 315-346.
[34] Veprek, S. and M.J. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings. Surface and Coatings Technology, 2008. 202(21): p. 5063-5073.
[35] Musil, J., Hard nanocomposite coatings: thermal stability, oxidation resistance and toughness. Surface and Coatings Technology, 2012. 207: p. 50-65.
[36] Veprek, S., R. Zhang, M. Veprek-Heijman, S. Sheng, and A. Argon, Superhard nanocomposites: Origin of hardness enhancement, properties and applications. Surface and Coatings Technology, 2010. 204(12-13): p. 1898-1906.
[37] Lin, J., J.J. Moore, B. Mishra, M. Pinkas, and W.D. Sproul, The structure and mechanical and tribological properties of TiBCN nanocomposite coatings. Acta Materialia, 2010. 58(5): p. 1554-1564.
[38] Yashar, P.C. and W.D. Sproul, Nanometer scale multilayered hard coatings. Vacuum, 1999. 55(3-4): p. 179-190.
[39] Holleck, H. and Schier, Multilayer PVD coatings for wear protection. Surface and Coatings Technology, 1995. 76: p. 328-336.
[40] Abadias, G., A. Michel, C. Tromas, C. Jaouen, and S. Dub, Stress, interfacial effects and mechanical properties of nanoscale multilayered coatings. Surface and Coatings Technology, 2007. 202(4-7): p. 844-853.
[41] Engström, C., J. Birch, L. Hultman, C. Lavoie, C. Cabral, J. Jordan-Sweet, and J. Carlsson, Interdiffusion studies of single crystal TiN/NbN superlattice thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999. 17(5): p. 2920-2927.
[42] Hansen, N., Hall–Petch relation and boundary strengthening. Scripta Materialia, 2004. 51(8): p. 801-806.
[43] Lu, K., Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Materials Science and Engineering: R: Reports, 1996. 16(4): p. 161-221.
[44] 李輝煌, 田口方法 : 品質設計的原理與實務. 三版 ed. 2008, 臺北縣: 高立. [1],500面.
[45] 鄭燕琴, 田口品質工程技術理論與實務. 品管系列叢書. 1995, 台北巿: 中華民國品質管制學會. 368 面.
[46] 陳耀茂, 田口實驗計畫法 = Introduction to design of experiment. 初版 ed. 1997, 臺中市: 滄海. [12],406面.
[47] Sánchez-López, J., D. Martínez-Martínez, C. López-Cartes, A. Fernández, M. Brizuela, A. García-Luis, and J. Oñate, Mechanical behavior and oxidation resistance of Cr (Al) N coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005. 23(4): p. 681-686.
[48] Chen, L., Y. Du, A.J. Wang, S.Q. Wang, and S.Z. Zhou, Effect of Al content on microstructure and mechanical properties of Ti–Al–Si–N nanocomposite coatings. International Journal of Refractory Metals and Hard Materials, 2009. 27(4): p. 718-721.
[49] Zhou, M., Y. Makino, M. Nose, and K. Nogi, Phase transition and properties of Ti–Al–N thin films prepared by rf-plasma assisted magnetron sputtering. Thin Solid Films, 1999. 339(1-2): p. 203-208.
[50] Choi, J.B., K. Cho, Y. Kim, K.H. Kim, and P.K. Song, Microstructure effect on the high-temperature oxidation resistance of Ti–Si–N coating layers. Japanese journal of applied physics, 2003. 42(10R): p. 6556.
[51] Chang, Y.-Y. and C.-Y. Hsiao, High temperature oxidation resistance of multicomponent Cr–Ti–Al–Si–N coatings. Surface and Coatings Technology, 2009. 204(6-7): p. 992-996.
[52] Pierson, H.O., Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications. 1996: William Andrew.
[53] Shackelford, J.F., Y.-H. Han, S. Kim, and S.-H. Kwon, CRC materials science and engineering handbook. 2016: CRC press.
[54] 陳思寰, (CrNbTaTiZr)Cx薄膜的機械性質與微結構之研究, 國立清華大學碩士論文, 2012
[55] Pharr, G. and W. Oliver, Measurement of thin film mechanical properties using nanoindentation. Mrs Bulletin, 1992. 17(7): p. 28-33.
[56] Ducros, C. and F. Sanchette, Multilayered and nanolayered hard nitride thin films deposited by cathodic arc evaporation. Part 2: Mechanical properties and cutting performances. Surface and Coatings Technology, 2006. 201(3-4): p. 1045-1052.
[57] Sclerometry, Nanoscratching and Nanoindentation – Surface Characterisation with the NTEGRA from NT-MDT. 2015; Available from: https://www.azom.com/article.aspx?ArticleID=4076.
[58] 林季薇, 多元碳化物(CrNbSiTiZr)Cx鍍膜之結構與性質研究, 國立清華大學碩士論文, 2007
[59] Zhang, Y., Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys. Advanced Engineering Materials, 2008. 10(6): p. 534-538.
[60] Ding, X.-z., A. Tan, X. Zeng, C. Wang, T. Yue, and C. Sun, Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2008. 516(16): p. 5716-5720.
[61] Otani, Y. and S. Hofmann, High temperature oxidation behaviour of (Ti1− xCrx) N coatings. Thin Solid Films, 1996. 287(1-2): p. 188-192.
[62] Hofmann, S. and H.A. Jehn, Selective oxidation and chemical state of Al and Ti in (Ti, Al) N coatings. Surface and Interface Analysis, 1988. 12(6): p. 329-333.
[63] <Inoue-mater. trans.-Classification from atomic size, mixing heat.pdf>.
[64] Mason, R.S. and M. Pichilingi, Sputtering in a glow discharge ion source-pressure dependence: theory and experiment. Journal of Physics D: Applied Physics, 1994. 27(11): p. 2363.
[65] Huffman, G., D. Fahnline, R. Messier, and L. Pilione, Stress dependence of reactively sputtered aluminum nitride thin films on sputtering parameters. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1989. 7(3): p. 2252-2255.
[66] Kusaka, K., D. Taniguchi, T. Hanabusa, and K. Tominaga, Effect of sputtering gas pressure and nitrogen concentration on crystal orientation and residual stress in sputtered AlN films. Vacuum, 2002. 66(3-4): p. 441-446.
[67] Chapman, S., T.G. Cowling, and D. Burnett, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. 1970: Cambridge university press.
[68] Lai, C.-H., S.-J. Lin, J.-W. Yeh, and S.-Y. Chang, Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surface and Coatings Technology, 2006. 201(6): p. 3275-3280.
[69] Combadiere, L. and J. Machet, Reactive magnetron sputtering deposition of TiN films. I. Influence of the substrate temperature on structure, composition and morphology of the films. Surface and Coatings Technology, 1997. 88(1-3): p. 17-27.
[70] Musil, J. and R. Daniel, Structure and mechanical properties of magnetron sputtered Zr–Ti–Cu–N films. Surface and Coatings Technology, 2003. 166(2-3): p. 243-253.
[71] Sundgren, J.-E., Structure and properties of TiN coatings. Thin solid films, 1985. 128(1-2): p. 21-44.
[72] Cheng, Y., B. Tay, and S. Lau, Influence of deposition temperature on the structure and internal stress of TiN films deposited by filtered cathodic vacuum arc. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002. 20(4): p. 1270-1274.
[73] Shtansky, D., A. Sheveiko, M. Petrzhik, F. Kiryukhantsev-Korneev, E. Levashov, A. Leyland, A. Yerokhin, and A. Matthews, Hard tribological Ti–B–N, Ti–Cr–B–N, Ti–Si–B–N and Ti–Al–Si–B–N coatings. Surface and Coatings Technology, 2005. 200(1-4): p. 208-212.
[74] Greene, J., J.E. Sundgren, L. Hultman, I. Petrov, and D. Bergstrom, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering. Applied physics letters, 1995. 67(20): p. 2928-2930.
[75] Pelleg, J., L. Zevin, S. Lungo, and N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Films, 1991. 197(1-2): p. 117-128.
[76] Ensinger, W., Growth of thin films with preferential crystallographic orientation by ion bombardment during deposition. Surface and Coatings Technology, 1994. 65(1-3): p. 90-105.
[77] Hultman, L., J.E. Sundgren, J. Greene, D. Bergstrom, and I. Petrov, High‐flux low‐energy (≂ 20 eV) N+ 2 ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation. Journal of applied physics, 1995. 78(9): p. 5395-5403.
[78] Vaz, F., L. Rebouta, S. Ramos, A. Cavaleiro, M. Da Silva, and J. Soares, Physical and mechanical properties of Ti1− xSixN films. Surface and Coatings Technology, 1998. 100: p. 110-115.
[79] Mattox, D., Particle bombardment effects on thin‐film deposition: A review. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1989. 7(3): p. 1105-1114.
[80] Petrov, I., L. Hultman, U. Helmersson, J.-E. Sundgren, and J. Greene, Microstructure modification of TiN by ion bombardment during reactive sputter deposition. Thin Solid Films, 1989. 169(2): p. 299-314.
[81] Håkansson, G., J.-E. Sundgren, D. McIntyre, J. Greene, and W.-D. Münz, Microstructure and physical properties of polycrystalline metastable Ti0. 5Al0. 5N alloys grown by dc magnetron sputter deposition. Thin Solid Films, 1987. 153(1-3): p. 55-65.
[82] Park, H.-S., D. Jung, H.-D. Na, J. Joo, and J. Lee, The properties of (Ti, Al) N coatings deposited by inductively coupled plasma assisted dc magnetron sputtering. Surface and Coatings Technology, 2001. 142: p. 999-1004.
[83] Dirks, A. and H. Leamy, Columnar microstructure in vapor-deposited thin films. Thin Solid Films, 1977. 47(3): p. 219-233.
[84] Bull, S., Failure modes in scratch adhesion testing. Surface and Coatings Technology, 1991. 50(1): p. 25-32.
[85] Singh, K., P. Limaye, N. Soni, A. Grover, R. Agrawal, and A. Suri, Wear studies of (Ti–Al) N coatings deposited by reactive magnetron sputtering. Wear, 2005. 258(11-12): p. 1813-1824.
[86] Wilson, S. and A. Alpas, Wear mechanism maps for TiN-coated high speed steel. Surface and Coatings Technology, 1999. 120: p. 519-527.
[87] Ma, S., J. Prochazka, P. Karvankova, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, and S. Vepřek, Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN. Surface and Coatings Technology, 2005. 194(1): p. 143-148.
[88] Yoon, S.-Y., J.-K. Kim, and K.H. Kim, A comparative study on tribological behavior of TiN and TiAlN coatings prepared by arc ion plating technique. Surface and Coatings Technology, 2002. 161(2-3): p. 237-242.
[89] Chu, K., P. Shum, and Y. Shen, Substrate bias effects on mechanical and tribological properties of substitutional solid solution (Ti, Al) N films prepared by reactive magnetron sputtering. Materials Science and Engineering: B, 2006. 131(1-3): p. 62-71.
[90] Veprek, S., H.-D. Männling, M. Jilek, and P. Holubar, Avoiding the high-temperature decomposition and softening of (Al1− xTix) N coatings by the formation of stable superhard nc-(Al1− xTix) N/a-Si3N4 nanocomposite. Materials Science and Engineering: A, 2004. 366(1): p. 202-205.
[91] Aslantas, K., I. Ucun, and A. Cicek, Tool life and wear mechanism of coated and uncoated Al2O3/TiCN mixed ceramic tools in turning hardened alloy steel. Wear, 2012. 274: p. 442-451.
[92] Ezugwu, E. and C. Okeke, Tool life and wear mechanisms of TiN coated tools in an intermittent cutting operation. Journal of Materials Processing Technology, 2001. 116(1): p. 10-15.
[93] Subramanian, C., Strafford, and KN, Review of multicomponent and multilayer coatings for tribological applications. Wear, 1993. 165(1): p. 85-95.
[94] Chen, L., Y. Du, X. Xiong, K.K. Chang, and M.J. Wu, Improved properties of Ti-Al-N coating by multilayer structure. International Journal of Refractory Metals and Hard Materials, 2011. 29(6): p. 681-685.