簡易檢索 / 詳目顯示

研究生: 黃逸豪
Huang, Yi-Hao
論文名稱: 深究產品的最佳特徵組合與消費者市場潛在品味:透過效用函數最小方差估計
Investigating optimal combination of product characteristics and potential taste of the consumer market through the utility function least square estimation
指導教授: 李雨青
Lee, Yu-Ching
口試委員: 冼芻蕘
Sin, Chor-Yiu
朱建達
Zhu, Jian-Da
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 60
中文關鍵詞: 效用函數商業智慧最佳化技術
外文關鍵詞: Utility Function, Business Intelligence, Optimization Techniques
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今競爭激烈的商業環境中,資訊的優勢成為超越其他企業的重要因素之一。商業智慧的其中功能的一個功能為決策支持系統。此研究建立關於效用函數的決策支持系統,以幫助企業做出決策。效用函數已經廣泛得應用以表達出消費者對需求的喜好程度。我們假設一個產品由許多的特徵組成。基於此概念,消費者將對每個不同獨特的特徵所組成的不同的產品進行評價且排名。根據評價後的分數,每個客戶將獲得自己對於每個產品的效用。因此,客戶願意購買最滿意的產品,意即,此產品在一個特定市場中具有最高的效用。我們建立消費者效用函數的純特徵需求模型。接著,我們設計了一個具有二次目標式和互補限制式的數學規劃作為最小化測量誤差函數的逆問題。藉由推導數學規劃的參數,我們可以利用推導得出的參數計算消費者的效用。我們使用真實的車輛數據來證實數學規劃的有效性。藉由不同的觀點,企業觀點和消費者觀點,我們能更加地了解市場的需求。


    Nowadays, the advantage of information becomes one of the important factors to beat other businesses in the competitive business environment. One of the functions of Business intelligence is decision support systems. This research deploys the decision support systems (DSS) about utility function to help the business make decisions. Utility function has been prevalent expressing one consumer's preference representing consumer's demand. We assume that one product is composed of many characteristics. Based on this concept, the consumer will rank different products by a unique score toward each characteristic. According to the scores, each customer will get his own utilities to each product. As a result, the customer is willing to buy the most satisfying product, i.e., the product with the highest utility within one specific market. We establish the pure characteristic demand model for consumer's utility function. We then formulate a mathematical program with quadratic objective function and complementarity constraints as the inverse problem that minimizes the error of the utility measured function. By deriving the parameters for the program, we can calculate the consumer's utility with the parameters. We use the real vehicle data to prove the validity of the program. Through different views, both business view and consumer view, we are able to understand more for the demand of the market.

    CHAPTER 1 INTRODUCTION 1 1.1 Introduction 1 1.2 Thesis Organization 3 CHAPTER 2 LITERATURE REVIEW 4 2.1 Inverse Optimization 4 2.2 Business Intelligence 8 2.3 Utility Function 11 CHAPTER 3 METHOD 16 3.1 Assumptions 16 3.2 Research Design 20 3.3 Data Collection 26 3.3.1 Populations 26 3.3.2 Models of Vehicles 26 3.3.3 Data Cleaning and Integration 30 3.3.4 Data Mining 31 3.4 Allowance and sensitivity 33 3.5 Two Views: Business View and Consumer View 33 3.5.1 Business View 34 3.5.2 Consumer View 35 CHAPTER 4 CASE STUDY AND RESULTS 37 4.1 Vehicle Market Description 37 4.2 Solutions of Model 41 4.3 Results of Business View 45 4.4 Results of Consumer View 47 CHAPTER 5 CONCLUSIONS AND FUTURE GOING 51 5.1 Conclusions 51 5.2 Future Directions 52 References 53 Appendix 58

    Apply for your first provisional driving licence. (2017, February 12). Retrived from
    https://www.gov.uk/apply-first-provisional-driving-licence
    Population Pyramids of the World from 1950 to 2100. (2017, February 12). Retrieved from
    https://populationpyramid.net/united-kingdom/2015/
    Ahuja, R. K., Orlin, J. B. (2001). Inverse optimization. Operations Research. 49(5):771-783.
    Andy Liaw, Matthew Wiener. Package ‘randomForest’ (2015, October, 7).
    Aswani, A, Shen, Z-J. M., Siddiq, A. (2015). Inverse Optimization with noisy data. manuscript.
    Beil, D. R., Wein, L. M. (2003). An inverse-optimization-based mechanism to support a multiat-tribute RFQ process. Management Science. 49(11):1529-1545.
    Bertsimas, D., Gupta, V., Paschalidis, I. C. (2012). Inverse optimization: A new perspective on the Black-Litterman model. Operations Research. 60(6):1389-1403.
    Berry, Steven, James Levinsohn, and Ariel Pakes. "Automobile prices in market equilibrium." Econometrica: Journal of the Econometric Society (1995): 841-890.
    Berry ST, Pakes A (2007) The pure characteristics demand model. Internat. Econom. Rev.
    48(4):11931225.
    Bholowalia, Purnima, and Arvind Kumar. "EBK-means: A clustering technique based on elbow method and k-means in WSN." International Journal of Computer Applications 105.9 (2014).
    Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.
    Burton, D., Toint, P. L. (1992). On an instance of the inverse shortest paths problem. Mathematical Programming. 53(1):45-61.
    Carr, S., Lovejoy, W. (2000). The inverse newsvendor problem: Choosing an optimal demand portfolio for apacitated resources. Management Science. 46(7):921-927.
    Chen, Hsinchun, Roger HL Chiang, and Veda C. Storey. "Business intelligence and analytics: From big data to big impact." MIS quarterly 36.4 (2012): 1165-1188.
    Chajewska, Urszula, Daphne Koller, and Dirk Ormoneit. "Learning an agent's utility function by observing behavior." ICML. 2001.
    Chajewska, Urszula, Daphne Koller, and Ronald Parr. "Making rational decisions using adaptive utility elicitation." AAAI/IAAI. 2000.
    Chan, T. C., Craig, T., Lee, T., Sharpe, M. B. (2014). Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy. Operations Re-search. 62(3):680-695.
    Cevher, V., Becker, S., Schmidt, M. (2014). Convex optimization for big data. manuscript.
    Cottle, R. W., Pang, J-S., and Stone, R. E. (2009). The Linear Complementarity Problem. 2nd Edition. Society for Industrial and Applied Mathematics, Philadephia.
    Dempe, S. (2002). Foundations of Bilevel Programming. Kluwer.
    Dougan, William R. "Giffen goods and the law of demand." Journal of Political Economy 90.4 (1982): 809-815.
    Eatwell, John, Murray Milgate, and Peter Newman, eds. Game theory. Springer, 1989.
    Efron, Bradley, and Trevor Hastie. Computer Age Statistical Inference. Vol. 5. Cambridge University Press, 2016.
    Facchinei, F. and Pang, J-S. (2003). Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume I and II. Springer-Verlag New York, Inc.
    Gantz, John, and David Reinsel. "The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east." IDC iView: IDC Analyze the future 2007.2012 (2012): 1-16.
    Heuberger, C. (2004). Inverse combinatorial optimization: A on problems, methods, and results. Journal of Combinatorial Optimization. 8(3):329-361.
    Iacocca, Kathleen, James Sawhill, and Yao Zhao. "Why brand drugs priced higher than generic equivalents." International Journal of Pharmaceutical and Healthcare Marketing 9.1 (2015): 3-19.
    Isik, Öykü, Mary C. Jones, and Anna Sidorova. "Business intelligence success: The roles of BI capabilities and decision environments." Information & Management 50.1 (2013): 13-23.
    Iyengar, G., Kang, W. (2005). Inverse conic programming with applications. Operations Research Letters. 33(3):319-330.
    Kościelniak, Helena, and Agnieszka Puto. "BIG DATA in decision making processes of enterprises." Procedia Computer Science 65 (2015): 1052-1058.
    Leoneti, Alexandre Bevilacqua. "Utility Function for modeling Group Multicriteria Decision Making problems as games." Operations Research Perspectives 3 (2016): 21-26.
    Luo, Z-Q, Pang, J-S, Ralph, D. (1996). Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge.
    Marín-Ortega, Pablo Michel, et al. "ELTA: New Approach in Designing Business Intelligence Solutions in Era of Big Data." Procedia Technology 16 (2014): 667-674.
    Pang, Jong-Shi, Che-Lin Su, and Yu-Ching Lee. "A constructive approach to estimating pure characteristics demand models with pricing." Operations Research 63.3 (2015): 639-659.
    Popovič, Aleš, et al. "Towards business intelligence systems success: Effects of maturity and culture on analytical decision making." Decision Support Systems 54.1 (2012): 729-739.
    Power, D. "What are the features of a data-driven DSS?." DSS News 8.4 (2007): 6.
    Pratt, John W. "Risk aversion in the small and in the large." Econometrica: Journal of the Econometric Society (1964): 122-136.
    Saltelli, Andrea, et al. Sensitivity analysis in practice: a guide to assessing scientific models. John Wiley & Sons, 2004.
    Selene Xia, Belle, and Peng Gong. "Review of business intelligence through data analysis." Benchmarking: An International Journal 21.2 (2014): 300-311.
    Shafer, A. J. (2009). Inverse integer programming. Optimization Letters. 3(4):483-489.
    Sheng, C. L. "A general utility function for decision-making." Mathematical Modelling 5.4 (1984): 265-274.
    Tarantola, Albert. Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics, 2005.
    Wang, L. (2009). Cutting plane algorithms for the in-verse mixed integer linear programming problem. Operations Research Letters. 37(2):114-116.
    Zhang, J., Xu, C. (2010). Inverse optimization for linearly constrained convex separable programming problems. EURO Journal of Operations Research. 200(3):671-679.

    QR CODE