簡易檢索 / 詳目顯示

研究生: 羅曉筠
Hsiao-Yun Lo
論文名稱: 銅鈀奈米粒子之合成及其在無電鍍銅之應用
The Synthesis of Cu/Pd Nanoparticles and Its Application to Electroless Copper Deposition
指導教授: 王詠雲
Yung-Yun Wang
萬其超
Chi-Chao Wan
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 114
中文關鍵詞: 奈米粒子無電鍍銅觸媒X光吸收光譜
外文關鍵詞: nanoparticle, electrless copper deposition, catalyst, EXAFS
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cu/Pd bimetallic nanoparticles have been successfully synthesized in the ambient condition with the aid of complexing agent, trisodium citrate and EDTA. XRD and XPS results show low degree of oxidation in Cu/Pd nanoparticles in citrate and EDTA systems. The TEM images reveal that the synthesized nanoparticles were well-dispersed and about 5 nm in diameter. The quenched XANES method was employed to investigate the formation mechanism of Cu/Pd nanoparticles with citric complexing agent. Two-stage and three-stage mechanisms were proposed for Cu/Pd molar ratio = 1/1 and 1/2 systems, respectively. The former was expected to have more Cu on surface while the latter had Pd enriched on surface. The Cu/Pd nanoparticles synthesized with citric complexing agent in different molar ratios were further tested as activator for electroless copper deposition. The nanoparticles with Cu/Pd = 1/2 was found to have catalytic ability comparable to traditional Pd/Sn colloid or pure Pd activator among all the bimetallic Cu/Pd systems. The most concerned long-term stability of Cu/Pd nanoparticles was investigated by XANES. Although slow Pd oxidation and Cu dissolution were found in Cu/Pd colloidal solution when exposed to air, the stability of these Cu/Pd nanoparticles was still acceptable in industrial application. In short, stable Cu/Pd nanoparticles have been successfully synthesized with citric complexing agent and showed high potential to be applied as activator in electroless copper deposition.


    本文主要探討水溶液中銅鈀奈米粒子的合成,此合成方法是透過添加檸檬酸或EDTA錯合劑至前驅鹽溶液中,使形成穩定的金屬錯合離子後,以甲醛還原金屬錯合離子成奈米級金屬微粒,以高分子型(PVP)保護劑形成立體障礙防止合成的粒子聚集沉澱。錯合劑除了改變金屬離子的還原電位外,亦可有效防止氫氧化物雜質的產生。
    經過穿透式電子顯微鏡的觀察,以檸檬酸錯合劑合成的銅鈀奈米粒子分散尤其良好,並具有均一的粒徑分布(3 nm ~ 4 nm),X光粉末繞射結果發現此奈米粒子確實是以雙金屬的型態存在。根據電子能譜儀的結果顯示,合成的銅鈀奈米粒子在表面上有些微的氧化,其氧化可能的原因為與保護劑的化學鍵結或是受氧氣的氧化所造成,然此奈米粒子的內部仍維持金屬的還原態。經過X光吸收光譜的分析,可以推測出可能的金屬錯合離子還原機構,不同的金屬前驅鹽比例會以不同的機制進行還原反應。在銅鈀比為1:2的系統中,還原反應主要可分為三部分,第一為鈀錯離子的成核,第二階段為銅錯離子還原及少量的鈀金屬還原,待大量的銅離子還原完後,進入還原反應的第三個階段,溶液中只剩鈀錯離子可繼續進行反應,最終有效形成較多鈀分布在表面的奈米粒子,此種奈米粒子具有較低的貴金屬鈀含量而仍具有鈀金屬的高催化活性。在銅鈀比為1:1的系統中,還原反應主要可分為二步驟,先為鈀核的形成而後為銅離子在鈀核上還原,因而形成以銅金屬為主的外層結構。
    將此種銅鈀奈米粒子應用在無電鍍銅的催化上,可以較簡便的流程進行無電鍍銅之催化反應,除了鈀金屬的含量之外,奈米粒子的外層結構或是PVP層包覆的型態亦有可能影響最終的催化鍍銅效果。銅鈀比為1:2的系統具有最高的催化活性,其催化鍍銅效率與傳統錫鈀膠體或是純鈀金屬相當。此外,此種銅鈀奈米粒子具有相當的穩定度,曝露在空氣中雖會有緩慢的鈀氧化與銅溶解現象,但仍具有穩定的懸浮能力與催化活性。整體而言,以檸檬酸錯合劑合成之銅鈀奈米粒子具有相當高的應用潛力。

    誌謝辭 I ABSTRACT II 摘要 III TABLE OF CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION TO NANOPARTICLES AND THEIR POTENTIAL APPLICATION 1 1.1 INTRODUCTION 1 1.2 SYNTHESIS OF METAL NANOPARTICLES 2 1.2.1 Electrochemical Synthesis 2 1.2.2 Sonochemical synthesis 4 1.2.3 photochemical synthesis 5 1.2.4 Wet-Chemical Synthesis with Reducing Agent 8 1.2.5 Synthesis of bimetallic nanoparticles 12 1.3 STABILIZATION MECHANISM OF METAL NANOPARTICLES 14 1.3.1 Electrostatic Stabilization 14 1.3.2 Streric Stabilization 16 1.4 CHARACTERIZATIONS OF METAL NANOPARTICLES 23 1.4.1 Ultraviolet/Visible Absorption Spectroscopy (UV/vis spectroscopy) 23 1.4.2 Fourier Transform Infrared (FT-IR) spectroscopy 24 1.4.3 Transmission Electron Microscopy (TEM) Observation 26 1.4.4 X-ray Diffraction Method 27 1.4.5 X-ray Photoelectron Spectroscopy 29 1.4.6 X-ray Scattering Method 31 1.4.7 X-ray Absorption Method 33 1.5 APPLICATION OF METAL NANOPARTICLES 37 1.5.1 Application for C-C coupling reactions 37 1.5.2 Application for Hydrogenation reactions 40 1.6 BRIEF REVIEW ON THE SYNTHESIS AND APPLICATION OF METAL NANOPARTICLES IN THE ELECTROCHEMISTRY LAB OF TSING-HUA UNIVERSITY 42 1.6.1 Electroless Copper Deposition 42 1.6.2 Application to Fuel Cell and Solar Cell 46 1.7 MOTIVATION 48 CHAPTER 2 SYNTHESIS OF CU/PD BIMETALLIC NANOPARTICLES WITH COMPLEXING AGENT 50 2.1 INTRODUCTION 50 2.2 EXPERIMENTS 52 2.2.1 Preparation of Cu/Pd Nanoparticles 52 2.2.2 Characterization of Cu/Pd Nanoparticles 52 2.2.3 Electroless Copper Deposition and Determination of Catalytic Ability 53 2.3 RESULTS AND DISCUSSIONS 55 2.3.1 Confirmation of Complexation between Metal Ions and Complexing Agents 55 2.3.2 Preparation and Characterization of the Cu/Pd Nanoparticles 56 2.3.3 Catalytic Ability of Cu/Pd Nanoparticles for Electroless Copper Deposition 67 2.4 CONCLUSION 72 CHAPTER 3 XAS STUDY ON FORMATION MECHANISM AND PARTICLE STRUCTURE 73 3.1 INTRODUCTION 73 3.2 EXPERIMENTS 75 3.2.1 Sample Preparation for quenched XANES Measurements 75 3.2.2 XAS Measurements 75 3.3 RESULTS AND DISCUSSIONS 77 3.3.1 XANES investigation on metal complexing ions 77 3.3.2 Formation mechanism of Cu/Pd (1/2) Nanoparticles from quenched XANES 78 3.3.3 Formation mechanism of Cu/Pd (1/1) Nanoparticles from quenched XANES 82 3.4 CONCLUSIONS 86 CHAPTER 4 FEASIBILITY AND LONG-TERM STABILITY TESTS OF CU/PD NANOPARTICLES FOR ELECTROLESS COPPER DEPOSITION 87 4.1 INTRODUCTION 87 4.2 EXPERIMENTS 89 4.2.1Preparation of Nanoparticles 89 4.2.2 Electroless Copper Deposition 89 4.2.3 Electrochemical Measurements 90 4.2.4 Sampling and Characterization Method of Long-term Stability 90 4.3 RESULTS AND DISCUSSIONS 92 4.3.1 Electroless Copper Deposition 92 4.3.2 Electrochemical measurement 98 4.3.3 Long-term Stability and Long-term Catalytic Ability 99 4.4 CONCLUSIONS 105 CHAPTER 5 106 CONCLUSIONS AND FUTURE WORK 106 5.1 CONCLUSIONS 106 5.2 FUTURE WORK 108 REFERENCE 109 ABOUT THE AUTHOR 114

    (1) Bönnemann, H.; Richards, R. M. Eur J Inorg Chem 2001, 10, 2455-2480.
    (2) Toshima, N.; Yonezawa, T. New J Chem 1998, 22, 1179-1201.
    (3) Eastoe, J.; Hollamby, M. J.; Hudson, L. Adv Colloid Interfac 2006, 128–130, 5–15.
    (4) Matsui, I. J Chem Eng Jpn 2005, 38, 535-546.
    (5) Finney, E. E.; Finke, R. G. J Colloid Interf Sci 2008, 317, 351–374.
    (6) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew Chem Int Edit 2005, 44, 7852-7872.
    (7) Huo, Q.; Worden, J. G. J Nanopart Res 2007, 9, 1013-1025.
    (8) Chang-Bing Hwang, Y.-S. F., Yi-Ling Lu, Shu-Wen Jang, Pi-Tai Chou, C. R.ChrisWang, and Shuchun Joyce Yu Journal of Catalysis 2000, 195, 336–341.
    (9) Nichols, W. T.; Sasaki, T.; Koshizaki, N. J Appl Phys 2006, 100, 114912-114916.
    (10) Yoshinaga, M.; Takahashi, H.; Yamamoto, K.; Muramatsu, A.; Morikawa, T. J Colloid Interf Sci 2007, 309, 149–154.
    (11) Simchi, A.; Ahmadi, R.; Reihani, S. M. S.; Mahdavi, A. Materials and Design 2007, 28, 850–856.
    (12) Glaspell, G.; Abdelsayed, V.; Saoud, K. M.; El-Shall, M. S. Pure Appl Chem 2006, 78, 1667–1689.
    (13) Reetz, M. T.; Helbig, W. J Am Chem Soc 1994, 116, 1401-1402.
    (14) Reetz, M. T.; Helbig, W.; Quaiser, S. A. Chem Mater 1995, 7, 2227-2228.
    (15) Conway, B. E.; Bockris, J. O. M. Proc. R. Soc. London Ser. 1958, 248, 394-403.
    (16) Reetz, M. T.; Winter, M.; Breinbauer, R.; Thurn-Albrecht, T.; Vogel, W. Chem-Eur J 2001, 7, 1084-1094.
    (17) Natter, H.; Hempelmann, R. J Phys Chem 1996, 100, 19525-19532.
    (18) Ma, H.; Yin, B.; Wang, S.; Jiao, Y.; Pan, W.; Huang, S.; Chen, S.; Meng, F. ChemPhysChem 2004, 5, 68-75.
    (19) Huang, S.; Ma, H.; Zhang, X.; Yong, F.; Feng, X.; Pan, W.; Wang, X.; Wang, Y.; Chen, S. J Phys Chem B 2005, 109, 19823-19830.
    (20) Yin, B.; Ma, H.; Wang, S.; Chen, S. J Phys Chem B 2003, 107, 8898-8904.
    (21) Nemamcha, A.; Rehspringer, J.-L.; Khatmi, D. J Phys Chem B 2006, 110, 383-387.
    (22) Okitsu, K.; Bandow, H.; Maeda, Y. Chem Mater 1996, 8, 315-317.
    (23) Dhas, N. A.; Gedanken, A. J Mater Chem 1998, 8, 445–450.
    (24) Gedanken, A. Ultrason Sonochem 2004, 11, 47–55.
    (25) Ultrasound-Its Chemical, Physical and Biological Effects; VCH Publishers: New York, 1988.
    (26) Sudeep, P. K.; Kamat, P. V. Chem Mater 2005, 17, 5404-5410.
    (27) Yonezawa, Y.; Sato, T.; Ohno, M.; Hada, H. J Chem Soc Farad T 1 1987, 83, 1559-1567.
    (28) Callegari, A.; Tonti, D.; Chergui, M. Nano Lett 2003, 3, 1565-1568.
    (29) Miranda, O. R.; Ahmadi, T. S. J Phys Chem B 2005, 109, 15724-15734.
    (30) McGilvray, K. L.; Decan, M. R.; Wang, D.; Scaiano, J. C. J Am Chem Soc 2006, 128, 15980-15981.
    (31) Yonezawa, Y.; Sato, T.; Kuroda, S.; Kuge, K. J Chem Soc Farad T 1 1991, 87, 1905-1910.
    (32) Kurihara, K.; Kizling, J.; Stenius, P.; Fendler, J. H. J Am Chem Soc 1983, 105, 2514-2519.
    (33) Scaiano, J. C.; Aliaga, C.; Maguire, S.; Wang, D. J Phys Chem B 2006, 110, 12856-12859.
    (34) Remita, S.; Mostafavi, M.; DelCourt, M. O. Radiat Phys Chem 1996, 47, 275-279.
    (35) Belloni, J.; Mostafavi, M.; Remita, H.; Marignier, J.-L.; Delcourt, M.-O. New J Chem 1998, 22, 1239-1255.
    (36) Turkevicphe, J.; Hillier, T. E. C. S. J. Discuss Faraday Soc 1951, 11, 55-75.
    (37) Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J Chem Soc Chem Comm 1994, 801.
    (38) Frens, G. Nature 1972, 1972, 20-22.
    (39) Brown, K. R.; Walter, D. G.; Natan, M. J. Chem Mater 2000, 12, 306-313.
    (40) Pong, B. K.; Elim, H. I.; Chong, J. X.; Ji, W.; Trout, B. L.; Lee, J. Y. J Phys Chem C 2007, 111, 6281-6287.
    (41) Pillai, Z. S.; Kamat, P. V. J Phys Chem B 2004, 108, 945-951.
    (42) Gorbunova, K. M.; Ivanov, M. V.; Moiseev, V. P. J Electrochem Soc 1973, 120, 613-618.
    (43) Lin, J.; Zhou, W.; O’Connor, C. J. Mate Lett 2001, 49, 282–286.
    (44) Rogach, A. L.; Khvalyuk, V. N.; Gurin, V. S. Colloid J+ 1994, 56, 221-223.
    (45) Meier, M. A. R.; Filali, M.; Gohy, J.-F.; Schubert, U. S. J Mater Chem 2006, 16, 3001–3006.
    (46) Qiu, S.; Dong, J.; Chen, G. J Colloid Interf Sci 1999, 216, 230-234.
    (47) Deshpande, V. M.; Singh, P.; Narasimhan, C. S. J Chem Soc Chem Comm 1990, 17, 1181-1182.
    (48) Jana, N. R.; Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782-6786.
    (49) Bucher, S.; Hormes, J.; Modrow, H.; Brinkmann, R.; Wald□ofner, N.; Boonnemann, H.; Beuermann, L.; Krischok, S.; Maus-Friedrichs, W.; Kempter, V. Surf Sci 2002, 497, 321–332.
    (50) Bönnemann, H.; Braun, G.; Brijoux, W.; Brinkmann, R.; Tilling, A. S.; Seevogel, K.; Siepen, K. J Organomet Chem 1996, 520, 143-162.
    (51) P. R. van Rheenen, M. J. M., W. S. Glaunsinger J Solid State Chem 1987, 67, 151-169.
    (52) Passel, L. 1947; Vol. 2,430,581.
    (53) Andrzej Gniewek a, J. J. Z., Anna M. Trzeciak , Leszek K˛epinski Journal of Catalysis 2006, 239, 272–281.
    (54) Zhang, W.; Qiao, X.; Chen, J.; Wang, H. J Colloid Interf Sci 2006, 302, 370–373.
    (55) Chen, D. H.; Chen, C. J. J Mater Chem 2002, 12, 1557–1562.
    (56) Wu, M. L.; Lai, L. B. Colloids Surfaces A 2004, 244, 149–157.
    (57) G.O. Mallory, J. B. H., Ed.; Am. Electroplaters and Surf. Finishers Soc: Orlando, FL, USA, 1990.
    (58) Andreas, H. A.; Kung, S. K. Y.; McLeod, E. J.; Young, J. L.; Birss, V. I. J Phys Chem C 2007, 111, 13321-13330.
    (59) Lin, J. M.; Lin, T. L.; Jeng, U. S.; Zhong, Y. J.; Yeh, C. T.; Chen, T.-Y. J Appl Crystallogr 2007, 40, 540-543.
    (60) Chou, K. S.; Ren, C. Y. Mater Chem Phys 2000, 64, 241–246.
    (61) Chou, K. S.; Lai, Y. S. Mater Chem Phys 2004, 83, 82–88.
    (62) Hirai, H.; Nakao, Y.; Toshima, N.; Adachi, K. Chem Lett 1976, 905.
    (63) Hirai, H.; Nakao, Y.; Toshima, N. Chem Lett 1978, 545.
    (64) Bonet, F.; Delmas, V.; Grugeon, S.; Urbina, R. H.; Silvert, P.-Y.; Tekaia-Elhsissen, K. Nanostruct Mater 1999, 11, 1277–1284.
    (65) Teranishi, T.; Miyake, M. Chem Mater 1998, 10, 594-600.
    (66) Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. J Phys Chem B 1999, 103, 3818-3827.
    (67) Ott, L. S.; Finke, R. G. Coordin Chem Rev 2007, 251, 1075-1100.
    (68) Bradley, J. S. Clusters and Colloids From Theory to Application; VCH: Weinheim, 1994. pp.466-468
    (69) Feldheim, D. L.; Colby A. Foss, J. Metal nanoparticles: synthesis, characterization, and applications; Marcel Dekker: New York 2002.
    (70) Shipley, C. R. 1961,U.S. Patent No.3,001,920
    (71) Blatchford, C. G.; Campbell, J. R.; Creighton, J. A. Surf Sci 1982, 120, 435-455.
    (72) Ozkar, S.; Finke, R. G. J Am Chem Soc 2002, 124, 5796-5810.
    (73) Finke, R. G.; Özkar, S. Coordin Chem Rev 2004, 248, 135–146.
    (74) Aiken, J. D.; Finke, R. G. Chem Mater 1999, 11, 1035-1047.
    (75) Zhang, Z.; Zhao, B.; Hu, L. J Solid State Chem 1996, 121, 105-110.
    (76) Abyaneh, M. K.; Paramanik, D.; Varma, S.; Gosavi, S. W.; Kulkarni, S. K. J Phys D Appl Phys 2007, 40, 3771–3779.
    (77) Zhao, M.; Sun, L.; Crooks, R. M. J Am Chem Soc 1998, 120, 4877-4878.
    (78) Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Accounts Chem Res 2001, 34, 181-190.
    (79) Capek, I. Adv Colloid Interfac 2004, 110, 49–74.
    (80) Zhang, W.; Qiao, X.; Chen, J. Mater Sci Eng 2007, 142, 1–15.
    (81) Templeton, A. C.; Wuelfing, W. P.; Murray, R. W. Accounts Chem Res 2000, 33, 27-36.
    (82) Balasubramanian, R.; Kim, B.; Tripp, S. L.; Wang, X.; Lieberman, M.; Wei, A. Langmuir 2002, 18, 3676-3681.
    (83) Zhao, X. G.; Shi, J. L.; Hu, B.; Zhang, L. X.; Hua, Z. L. Mate Lett 2004, 58, 2152– 2156.
    (84) Creighton, J. A.; Eadon, D. G. J Chem Soc Faraday T. 1991, 87, 3881.
    (85) Andersson, M.; Pedersen, J. S.; Palmqvist, A. E. C. Langmuir 2005, 21, 11387-11396.
    (86) Bradley, J. S.; Hill, E. W.; Behal, S.; Klein, C. Chem Mater 1992, 4, 1234-1239.
    (87) Bradley, J. S.; Via, G. H.; Bonneviot, L.; Hill, E. W. Chem Mater 1996, 8, 1895-1903.
    (88) Caro, D. d.; Bradley, J. S. Langmuir 1997, 13, 3067-3069.
    (89) Caro, D. d.; Bradley, J. S. New J Chem 1998, 1267-1273.
    (90) Toshima, N.; Wang, Y. Langmuir 1994, 10, 4574-4580.
    (91) Cullity, B. D.; Stock, S. R. Elements of X-ray Diffraction; third ed.; Prentice-Hall: New Jersey, 2001. pp.389
    (92) Ungar, T. J Mater Sci 2007, 42, 1584–1593.
    (93) Vickerman, J.C., Surface Analysis The Principal Techniques; John Wiley & Sons, Ltd.: Chichester, England, 1997.
    (94) Wang, Y.; Liu, H. Polym Bull 1991, 25, 139-144.
    (95) Liu, H.; Mao, G.; Meng, S. J Mol Catal 1992.
    (96) Lan, J. L.; Wan, C. C.; Wang, Y. Y. J Electrochem Soc 2008, 155, K77-K83.
    (97) Hyeon Suk Shin , H. C. C., Yeonwook Jung, Seung Bin Kim, Ha Jin Song, Hyun Joon Shin Chemical Physics Letters 2004, 383, 418–422.
    (98) Gniewek, A.; Trzeciak, A. M.; Ziółkowski, J. J.; K˛epi´nski, L.; Wrzyszcz, J.; Tylus, W. J Catal 2005, 229.
    (99) Sakamotoand, N.; Harada, M.; Hashimoto, T. Macromolecules 2006, 39, 1116-1124.
    (100) Chen, C. H.; Hwang, B. J.; Wang, G. R.; Sarma, L. S.; Tang, M. T.; Liu, D. G.; Lee, J. F. J Phys Chem B 2005, 109, 21566-21575.
    (101) Phan, N. T. S.; Sluys, M. V. D.; Jones, C. W. Adv Synth Catal 2006, 348, 609 – 679.
    (102) Biffis, A.; Zecca, M.; Basato, M. J Mol Catal A-Chem 2001, 173, 249–274.
    (103) Belier, M.; Fischer, H.; Kiihlein, K.; Reisinger, C. P.; Herrmarm, W. A. J Organomet Chem 1996, 520, 257-259.
    (104) Riermeier, T. H.; Zapf, A.; Beller, M. Top Catal 1997, 4, 301–309.
    (105) Bars, J. l. L.; Specht, U.; Bradley, J. S.; Blackmond, D. G. Langmuir 1999, 15, 7621-7625.
    (106) Li, Y.; Boone, E.; El-Sayed, M. A. Langmuir 2002, 18, 4921-4925.
    (107) Li, Y.; El-Sayed, M. A. J Phys Chem B 2001, 105, 8938-8943.
    (108) Hu, J.; Liu, Y. Langmuir 2005, 21, 2121-2123.
    (109) Niu, Y.; Yeung, L. K.; Crooks, R. M. J Am Chem Soc 2001, 123, 6840-6846.
    (110) Kidambi, S.; Bruening, M. L. Chem Mater 2005, 17, 301-307.
    (111) Prüsse, U.; Vorlop, K.-D. J Mol Catal A-Chem 2001, 173, 313–328.
    (112) Lee, C. L.; Wan, C. C.; Wang, Y. Y. Adv Funct Mater 2001, 11, 344-347.
    (113) Lee, C. L.; Wan, C. C.; Wang, Y. Y. J Electrochem Soc 2003, 150, C125-C130.
    (114) Wang, W. L.; Wang, Y. Y.; Wan, C. C.; Lee, C. L. Colloids Surfaces A 2006, 275, 11–16.
    (115) Yang, C. C.; Wan, C. C.; Wang, Y. Y. J Colloid Interf Sci 2004, 279, 433–439.
    (116) Chen, L. J.; Wan, C. C.; Wang, Y. Y. J Colloid Interf Sci 2006, 297, 143–150.
    (117) Yang, C. C.; Wan, C. C.; Wang, Y. Y. J Electrochem Soc 2006, 153, J27-J31.
    (118) Yang, C. C.; Wang, Y. Y.; Wan, C. C. J Electrochem Soc 2005, 152, C96-C100.
    (119) Peng, C.; Lo, S. H. Y.; Wan, C. C.; Wang, Y. Y. Colloids Surfaces A 2007, 308, 93–99.
    (120) Tu, H. C.; Wang, W. L.; Wan, C. C.; Wang, Y. Y. J Phys Chem B 2006, 110 15988-15993.
    (121) Wei, T. C.; Wan, C. C.; Wang, Y. Y. Appl Phys Lett 2006, 88, 103122.
    (122) Bradley, J. S.; Hill, E. W.; Klein, C.; Chaudret, B.; Duteil, A. Chem Mater 1993, 5, 524-526.
    (123) Jiang, P.; Li, S. Y.; Xie, S. S.; Gao, Y.; Song, L. Chem-Eur J 2004, 10, 4817 – 4821.
    (124) Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D.; Chastain, J., Handbook of X-Ray Photoelectron Spectroscopy; Perkin–Elmer Cor.: Eden Prairie, MN, 1992.
    (125) DeNardis, D.; RosalesYeomans, D.; Borucki, L.; Philipossian, A. Thin Solid Films 2006, 513, 311–318.
    (126) Casella, I. G.; Gatta, M. J Electroanal Chem 2000, 494, 12–20.
    (127) Meda, L.; Cerofolini, G. F. Surf Interface Anal 2004, 36, 756–759.
    (128) Harada, M.; Asakura, K.; Ueki, Y.; Toshima, N. J Phys Chem 1993, 97, 10742-10149.
    (129) Lu, P.; Dong, J.; Toshima, N. Langmuir 1999, 15, 7980-7992.
    (130) Nashner, M. S.; Frenkel, A. I.; Somerville, D.; Hills, C. W.; Shapley, J. R.; Nuzzo, R. G. J Am Chem Soc 1998, 120, 8093-8101.
    (131) Hwang, B. J.; Tsai, Y. W.; Sarma, L. S.; Tseng, Y. L.; Liu, D. G.; Lee, J. F. J Phys Chem B 2004, 20427-20434.
    (132) Kau, L. S.; Spira-Solomon, D. J.; Penner-Hahn, J. E.; Hodgson, K. O.; Solomon, E. I. J Am Chem Soc 1987, 109, 6433-6442.
    (133) Kau, L. S.; Hodgson, K. O.; Solomon, E. I. J Am Chem Soc 1989, 111, 7103-7109.
    (134) Montano, P. A.; Shenoy, G. K.; E.E. Alp, W. S.; Urban, J. Phys Rev Lett 1986, 56, 2076-2079.
    (135) Ivanov, S.; Tsakova, V. J Appl Electrochem 2002, 32, 701–707.
    (136) O’Sullivan, E. J. M.; Horkans, J.; White, J. R.; Roldan, J. M. IBM J Res Dev 1988, 32, 591.
    (137) Brenner, A. J Res Nat Bur Stand 1946, 37, 1.
    (138) Paunovic, M.; Bailey, P. J.; Schad, R. G. J Electrochem Soc 1994, 141, 1843.
    (139) Shao, M.; Liu, P.; Zhang, J.; Adzic, R. J Phys Chem B 2007, 111, 6772-6775.
    (140) Salvador-Pascual, J. J.; Citalan-Cigarroa, S.; Solorza-Feria, O. J Power Sources 2007, 172, 229–234.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE