研究生: |
孟卡廉諾 Juan David Moncaleano |
---|---|
論文名稱: |
Visualization of interactions between molecular motors and their adaptors in the nervous system of C. elegans using the BiFC assay 藉由螢光雙分子雜交技術研究線蟲神經系統中分子馬達和其連接蛋白的交互作用 |
指導教授: |
王歐力
Oliver Wagner |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 線蟲 、分子馬達 、神經 、蛋白交互作用 、螢光雙分子雜交技術 、神經系統 |
外文關鍵詞: | C. elegans, Molecular motor, Neuron, Protein interaction, Protein complementation, Nervous system |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Neurons are highly polarized cells whose function depends on the targeted delivery of proteins, vesicle cargos, membranous organelles and mRNAs to specific locations in axons and dendrites. This process is accomplished by molecular motors that move cargos along microtubule tracks. Defects in axonal transport have an important role in the pathogenesis of various neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Huntington disease, while in Alzheimer’s disease and Parkinson’s disease, the accumulation of cargo is a hallmark. Although the mechanisms that regulate molecular motors are not well understood, the role of adaptors that coordinate cargo-bound motors and bidirectional transport that occurs when opposite polarity motors attached to the same cargo, have been described as important levels of regulation. Using an interactome map that include predicted interactions, we identified UNC-16(JIP3) and DNC-1(p150GLUED) as binding partners of the major synaptic vesicle transporter UNC-104(KIF1A) in C. elegans. UNC-16 has been known to regulate the vesicle transport in C. elegans, acting as a scaffold protein, binding the light chain of kinesin-1 (KLC-2) and JNK signaling components. However a direct interaction between UNC-104 and UNC-16 has not been reported. In addition we were also interested in studying the interaction between UNC-104 and DNC-1 (major subunit of dynactin), since dynactin is an important adaptor of the minus-end directed molecular motor dynein. We applied the novel Bimolecular Fluorescence Complementation (BiFC) assay to visualize interactions between molecular motors and adaptors in living C. elegans. In this assay, interacting partners are fused to complementary fragments of a fluorescent protein, which is reconstituted if the interaction between the partners occurs. With this method we were able to visualize the following interactions in living worm and at sub-cellular level: UNC-104/UNC-16, UNC-104/DNC-1, UNC-16/KLC-2, and UNC-16/DNC-1. Interestingly, these interaction complexes showed different sub-cellular distributions in the neuron, which provide evidence of the important role of adaptor proteins in molecular motors regulation. To identify novel regulators of these interaction complexes, we already used gamma irradiation to integrate the extrachromosomal arrays in the BiFC worms generated by microinjection and intend to combine the BiFC assay with EMS mutagenesis and RNAi screening.
神經細胞是高度極化的細胞,這種極化的特性來自於神經樹突、軸突位置中各類蛋白、囊泡載體、帶膜類胞器、以及mRNA等特定分子的運輸。而運輸過程是藉著分子馬達將載體沿著微小管形成的軌道運送。已知神經軸突運輸的缺陷在各類神經退化疾病中扮演重要的角色,諸如肌萎縮性側索硬化症 (ALS)、亨丁頓氏舞蹈症、阿滋海默症、和帕金森氏症等疾病中載體的不正常堆積都是顯著的現象。雖然目前對於分子馬達的調節機制仍然不甚清楚,但連接蛋白(adaptors)能協調載體-分子馬達複合體以及當走向相反的分子馬達接在同一個載體時所造成的雙向運動,且過去文獻中也肯定連接蛋白本身具有相當的調節功能。此外,利用生物資訊程式可以用來預測蛋白質的交互作用網路。我們確認UNC-16(JIP3) 和 DNC-1(p150GLUED) 是線蟲主要的突觸囊泡運輸分子馬達UNC-104(KIF1A)的結合蛋白。UNC-16 蛋白已知在線蟲中調節囊泡運輸時扮演鷹架蛋白(scaffold protein)的角色,它能與kinesin-1 (KLC-2) 的輕鏈及JNK訊號蛋白結合。然而,探討UNC-104和 UNC-16之間直接的交互作用的研究成果目前還沒有被發表過。此外,我們也對研究UNC-104 和 DNC-1 (dynactin的次單位)間的交互作用深感興趣。Dynactin 是負極走向分子馬達dynein的連接蛋白。我們利用螢光雙分子雜交技術 (Bimolecular Fluorescence Complementation )去觀察在活體線蟲中的分子馬達和間接蛋白的交互作用。這種分析是以不同蛋白個別接上一個結構上互補的螢光分子序列,當蛋白有交互作用時,互補的螢光分子結構會相結合形成完整的螢光分子。利用這種方法,我們可以直接觀察到在活體線蟲或線蟲細胞中的UNC-104/UNC-16, UNC-104/DNC-1, UNC-16/KLC-2, and UNC-16/DNC-1的交互作用。有趣的是,在細胞層次上,我們發現這些交互作用的分子在神經細胞中有不同的分布型態,這個發現提供了證據說明間接蛋白在分子馬達調節功能上扮演重要的角色。為了確認由此技術觀察到的調節分子,我們利用γ-ray 去照射表現BiFC螢光的線蟲,使當初利用顯微注射後以染色體外陣列(extrachromosomal array) 形式存在蟲體中的外來質體能夠插入染色體,同時將使用EMS突變劑及RNAi篩選的方式來搭配BiFC 的分析。
1. Altun, Z. F.; Herndon, L. A.; Crocker, C.; Lints, R; Hall, D. H. WormAtlas. In: 2010.
2. Berezuk, M. A.; Schroer, T. A. Dynactin enhances the processivity of kinesin-2. Traffic. 2007 Feb;8(2):124-129.
3. Blangy, A.; Arnaud, L.; Nigg, E. A. Phosphorylation by p34cdc2 protein kinase regulates binding of the kinesin-related motor HsEg5 to the dynactin subunit p150. J Biol Chem. 1997 Aug;272(31):19418-19424.
4. Breitkreutz, B. J.; Stark, C.; Tyers, M. Osprey: a network visualization system. Genome Biol. 2003;4(3):R22.
5. Brenner, S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71-94.
6. Byrd, D. T.; Kawasaki, M.; Walcoff, M.; Hisamoto, N.; Matsumoto, K.; Jin, Y. UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron. 2001 Dec;32(5):787-800.
7. Christensen, M.; Estevez, A.; Yin, X.; Fox, R.; Morrison, R.; McDonnell, M.; Gleason, C.; Miller, D. M., III; Strange, K. A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron. 2002 Feb;33(4):503-514.
8. De Vos, K. J.; Grierson, A. J.; Ackerley, S.; Miller, C. C. Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci. 2008;31:151-173.
9. Deacon, S. W.; Serpinskaya, A. S.; Vaughan, P. S.; Lopez, Fanarraga M.; Vernos, I.; Vaughan, K. T.; Gelfand, V. I. Dynactin is required for bidirectional organelle transport. J Cell Biol. 2003 Feb;160(3):297-301.
10. Evans, T. C. Wormbook: Transformation and microinjection. In: 2006.
11. Gallagher, S. R.; Winston, S. E.; Fuller, S. A.; Hurrell, J. G. Immunoblotting and immunodetection. Curr Protoc Cell Biol. 2001 May;Chapter 6:Unit.
12. Grinberg, A. V.; Hu, C. D.; Kerppola, T. K. Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol Cell Biol. 2004 May;24(10):4294-4308.
13. Gross, S. P.; Welte, M. A.; Block, S. M.; Wieschaus, E. F. Coordination of opposite-polarity microtubule motors. J Cell Biol. 2002 Feb;156(4):715-724.
14. Guan, H.; Kiss-Toth, E. Advanced technologies for studies on protein interactomes. Adv Biochem Eng Biotechnol. 2008;110:1-24.
15. Hendricks, A. G.; Perlson, E.; Ross, J. L.; Schroeder, H. W., III; Tokito, M.; Holzbaur, E. L. Motor Coordination via a Tug-of-War Mechanism Drives Bidirectional Vesicle Transport. Curr Biol. 2010 Apr.
16. Hiatt, S. M.; Shyu, Y. J.; Duren, H. M.; Hu, C. D. Bimolecular fluorescence complementation (BiFC) analysis of protein interactions in Caenorhabditis elegans. Methods. 2008 Jul;45(3):185-191.
17. Hirokawa, N.; Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci. 2005 Mar;6(3):201-214.
18. Holzbaur, E. L.; Goldman, Y. E. Coordination of molecular motors: from in vitro assays to intracellular dynamics. Curr Opin Cell Biol. 2010 Feb;22(1):4-13.
19. Horiuchi, D.; Collins, C. A.; Bhat, P.; Barkus, R. V.; Diantonio, A.; Saxton, W. M. Control of a kinesin-cargo linkage mechanism by JNK pathway kinases. Curr Biol. 2007 Aug;17(15):1313-1317.
20. Hsu, Chih-Chun. Visualization of Direct Protein Interactions in the Nervous System of C. elegans Using the BiFC Assay : National Tsing Hua University; 2010.
21. Kardon, J. R.; Vale, R. D. Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol. 2009 Dec;10(12):854-865.
22. Kerppola, T. K. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc. 2006a;1(3):1278-1286.
23. Kerppola, T. K. Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol. 2006 Junb;7(6):449-456.
24. Kerppola, T. K. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation. Chem Soc Rev. 2009 Oct;38(10):2876-2886.
25. King, S. J.; Brown, C. L.; Maier, K. C.; Quintyne, N. J.; Schroer, T. A. Analysis of the dynein-dynactin interaction in vitro and in vivo. Mol Biol Cell. 2003 Dec;14(12):5089-5097.
26. King, S. J.; Schroer, T. A. Dynactin increases the processivity of the cytoplasmic dynein motor. Nat Cell Biol. 2000 Jan;2(1):20-24.
27. Klopfenstein, D. R.; Tomishige, M.; Stuurman, N.; Vale, R. D. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell. 2002 May;109(3):347-358.
28. Koushika, S. P. "JIP"ing along the axon: the complex roles of JIPs in axonal transport. Bioessays. 2008 Jan;30(1):10-14.
29. Koushika, S. P.; Schaefer, A. M.; Vincent, R.; Willis, J. H.; Bowerman, B.; Nonet, M. L. Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. J Neurosci. 2004 Apr;24(16):3907-3916.
30. Kural, C.; Kim, H.; Syed, S.; Goshima, G.; Gelfand, V. I.; Selvin, P. R. Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science. 2005 Jun;308(5727):1469-1472.
31. Mello, C. C.; Kramer, J. M.; Stinchcomb, D.; Ambros, V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959-3970.
32. Miao, T.; Wu, D.; Wheeler, A.; Wang, P.; Zhang, Y.; Bo, X.; Yeh, J. S.; Subang, M. C.; Richardson, P. M. Two cytokine signaling molecules co-operate to promote axonal transport and growth. Exp Neurol. 2010 Sep.
33. Montagnac, G.; Sibarita, J. B.; Loubery, S.; Daviet, L.; Romao, M.; Raposo, G.; Chavrier, P. ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr Biol. 2009 Feb;19(3):184-195.
34. Muller, M. J.; Klumpp, S.; Lipowsky, R. Bidirectional transport by molecular motors: enhanced processivity and response to external forces. Biophys J. 2010 Jun;98(11):2610-2618.
35. Perlson, E.; Maday, S.; Fu, M. M.; Moughamian, A. J.; Holzbaur, E. L. Retrograde axonal transport: pathways to cell death? Trends Neurosci. 2010 Jul;33(7):335-344.
36. Praitis, V.; Casey, E.; Collar, D.; Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics. 2001 Mar;157(3):1217-1226.
37. Remy, I.; Michnick, S. W. A cDNA library functional screening strategy based on fluorescent protein complementation assays to identify novel components of signaling pathways. Methods. 2004 Apr;32(4):381-388.
38. Sakamoto, R.; Byrd, D. T.; Brown, H. M.; Hisamoto, N.; Matsumoto, K.; Jin, Y. The Caenorhabditis elegans UNC-14 RUN domain protein binds to the kinesin-1 and UNC-16 complex and regulates synaptic vesicle localization. Mol Biol Cell. 2005 Feb;16(2):483-496.
39. Sann, S.; Wang, Z.; Brown, H.; Jin, Y. Roles of endosomal trafficking in neurite outgrowth and guidance. Trends Cell Biol. 2009 Jul;19(7):317-324.
40. Shaham, S. WormBook: Methods in Cell Biology. In: The C. elegans Research Community; 2010.
41. Shyu, Y. J.; Hiatt, S. M.; Duren, H. M.; Ellis, R. E.; Kerppola, T. K.; Hu, C. D. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat Protoc. 2008;3(4):588-596.
42. Shyu, Y. J.; Hu, C. D. Fluorescence complementation: an emerging tool for biological research. Trends Biotechnol. 2008 Nov;26(11):622-630.
43. Siebert, P. D.; Chenchik, A.; Kellogg, D. E.; Lukyanov, K. A.; Lukyanov, S. A. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 1995 Mar;23(6):1087-1088.
44. Skop, A. R.; White, J. G. The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos. Curr Biol. 1998 Oct;8(20):1110-1116.
45. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell. 2003 Feb;112(4):467-480.
46. Verhey, K. J. Motor proteins: trafficking and signaling collide. Curr Biol. 2007 Sep;17(18):R804-R806.
47. Wagner, O. I.; Esposito, A.; Kohler, B.; Chen, C. W.; Shen, C. P.; Wu, G. H.; Butkevich, E.; Mandalapu, S.; Wenzel, D.; Wouters, F. S.; Klopfenstein, D. R. Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proc Natl Acad Sci U S A. 2009 Nov;106(46):19605-19610.
48. Waterman-Storer, C. M.; Karki, S.; Holzbaur, E. L. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc Natl Acad Sci U S A. 1995 Feb;92(5):1634-1638.
49. Welte, M. A. Bidirectional transport along microtubules. Curr Biol. 2004 Jul;14(13):R525-R537.
50. Welte, M. A. Bidirectional transport: matchmaking for motors. Curr Biol. 2010 May;20(9):R410-R413.
51. Whitmarsh, A. J. The JIP family of MAPK scaffold proteins. Biochem Soc Trans. 2006 Nov;34(Pt 5):828-832.
52. Yeh, E.; Kawano, T.; Weimer, R. M.; Bessereau, J. L.; Zhen, M. Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans. J Neurosci. 2005 Apr;25(15):3833-3841.
53. Yonekawa, Y.; Harada, A.; Okada, Y.; Funakoshi, T.; Kanai, Y.; Takei, Y.; Terada, S.; Noda, T.; Hirokawa, N. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol. 1998 Apr;141(2):431-441.
54. Zhang, S.; Ma, C.; Chalfie, M. Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell. 2004 Oct;119(1):137-144.
55. Zhong, W.; Sternberg, P. W. Genome-wide prediction of C. elegans genetic interactions. Science. 2006 Mar;311(5766):1481-1484.
56. Zhou, H. M.; Brust-Mascher, I.; Scholey, J. M. Direct visualization of the movement of the monomeric axonal transport motor UNC-104 along neuronal processes in living Caenorhabditis elegans. J Neurosci. 2001 Jun;21(11):3749-3755.