簡易檢索 / 詳目顯示

研究生: 陳立得
Chen, Li-Te
論文名稱: 應用於光場攝影與顯示的高效能演算法與硬體協同設計
High-Efficiency Algorithm-Hardware Co-Design for Light Field Imaging and Display
指導教授: 黃朝宗
Huang, Chao-Tsung
口試委員: 林嘉文
Lin, Chia-Wen
謝志成
Hsieh, Chih Cheng
簡韶逸
Chien, Shao-Yi
賴永康
Lai, Yeong-Kang
王家慶
Wang, Jia-Ching
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 115
中文關鍵詞: 光場影像計算攝影計算顯示器
外文關鍵詞: Light Field, Computational Photography, Computational Imaging
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光場技術透過全面的場景描述提升了圖像處理能力,使得應用如重新對焦、
    擴增實境和 3D 顯示成為可能。然而,用於成像和顯示的專門硬體需要進行演
    算法優化。伴隨而來的高資料存取和計算需求帶來了重大挑戰。本論文提出藉
    由演算法與硬體協同設計達到增強應用能力,並提升運算與記憶體存取效率,
    解決光場成像和顯示中的計算挑戰。

    在光場成像中,深度圖對於連接各個視角的像素至關重要。使用光場立體
    匹配估計深度面臨著 DRAM 頻寬和功耗的重大挑戰。在我們的目標 Full HD
    場景中,可能需要高達 6.4 GB/s 的頻寬和 153 nJ/label 的能耗。我們引入了
    一種光場立體匹配的演算法-硬體協同設計,以提升計算與記憶體存取的效率,
    將 DRAM 頻寬減少了 53%,硬體複雜度降低了 81.5%,而相對深度誤差僅為
    4.61%。在 40nm 佈局模擬和 FPGA 實現中,可以在 30 fps 下實現 4K-UHD 和
    Full-HD 深度估計,分別消耗 24.5 pJ/label 和 95 pJ/label。

    光場技術還使 3D 顯示成為可能,其中分解式光場顯示器提供了高解析度、
    多視角的裸視立體 3D 體驗。然而,分解式光場顯示器中時間調制可能導致在
    播放期間的瑕疵與視覺閃爍。我們提出了時間融合演算法,將閃爍減少了 91%,
    並將播放品質提高了 5.0 dB。此外影片分解也面臨著低記憶體存取效率的問題,
    成為計算瓶頸,使得每個子幀運行時間長達 2.6 秒。為解決這個問題,我們提
    出了一種基於 GPU 加速的立方體視頻分解演算法,提高了記憶體存取效率,並
    為時間融合演算法提供了 4-5 倍的速度提升,而不影響品質。

    本論文展示了硬體與演算法協同設計如何有效地滿足先進光場成像和顯示技
    術的需求。通過解決應用挑戰並提升運算和記憶體存取效率以加速處理,本研
    究為未來光場成像和顯示技術的進步奠定了基礎。


    Light fields enhance image processing with comprehensive scene descriptions, enabling applications such as refocusing, augmented reality, and 3D displays. However, specialized hardware for imaging and displaying requires algorithms for optimization. The accompanied computational and memory demands pose significant challenges. This dissertation introduces algorithm and hardware co-designs
    to enhance application capabilities, and to improve computational and memory efficiency for light field imaging and display.

    In light field imaging, depth maps are crucial for linking pixels across views. Estimating depth using light field stereo matching face major challenges on DRAM bandwidth and power consumption. It could demand up to 6.4 GB/s and 153 nJ/label for our target Full HD scenarios. We introduce an algorithm-hardware co-design for light-field stereo matching to enhance both computational and memory efficiency, reducing DRAM bandwidth by 53% and hardware complexity by 81.5%, with only 4.61% relative depth error. Implementations with 40nm lay out simulation and FPGA emulation can achieve 4K-UHD and Full-HD depth estimation at 30 fps, consuming 24.5 pJ/label and 95 pJ/label respectively.

    Light fields enable high-resolution, multi-view autostereoscopic 3D factored displays. However, the inherent temporal modulation can cause visual artifacts and flickering during video playback. We propose the Temporal Fusion factorization to reduce flickering by 91% and enhance video quality by 5.0 dB. On the other hand, video factorization faces low memory efficiency, creating a 2.6-second runtime bottleneck per sub-frame. To address this, a hardware-oriented factorization for Temporal Fusion–Cuboid-wise Factorization–is proposed. It improves memory efficiency on GPU and provides 4-5x speed-ups for Temporal Fusion without compromising quality.

    Overall, this dissertation demonstrates how algorithm-hardware co-design can enhance the application capabilities and increase computational and memory efficiency for light field imaging and display technologies. By addressing the inherent challenges and providing high-efficiency light field processing, this work lays a foundation for future advancements in light field imaging and display.

    摘要 i Abstract iii 誌謝 v 1 Overview of Dissertation 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Light-Field Depth Estimation . . . . . . . . . . . . . . . . . 8 1.3.2 Light-Field Factored Display . . . . . . . . . . . . . . . . . 8 1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . 9 2 Light-Field Depth Estimation 11 2.1 Light-Field Depth Estimation . . . . . . . . . . . . . . . . . . . . . 12 2.1.1 Algorithm Framework . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 Design Challenges . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Satellite Light Field and Image-Guided Inference . . . . . . . . . . 20 2.2.1 Satellite Light Field . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Image-Guided Inference and Upsampling . . . . . . . . . . . 22 2.2.3 Proposed Hardware Design . . . . . . . . . . . . . . . . . . 25 2.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Long-Range Octave Depth Label Sampling . . . . . . . . . . . . . . 31 2.3.1 Octave Depth Label Sampling . . . . . . . . . . . . . . . . . 31 viii 2.3.2 Pyramid Memory Architecture . . . . . . . . . . . . . . . . 33 2.3.3 Proposed Hardware Design . . . . . . . . . . . . . . . . . . 36 2.3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 37 2.4 Hardware Implementation and Demonstration System . . . . . . . . 40 2.4.1 VLSI Implementation . . . . . . . . . . . . . . . . . . . . . 42 2.4.2 FPGA Implementation . . . . . . . . . . . . . . . . . . . . . 43 2.4.3 View-Scalable Operations . . . . . . . . . . . . . . . . . . . 43 2.4.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.4.5 Real-time 5-view Light-Field Stereo Matching Demonstration 46 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 Light-Field Factored Display 51 3.1 Factored Display and Light Field Factorization . . . . . . . . . . . 51 3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.1.3 Proposed Methods Overview . . . . . . . . . . . . . . . . . 53 3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2.1 Notations for 4D Light Field and Factored Display . . . . . 54 3.2.2 Frame-based Factorization for Stop-Motion Objective . . . . 56 3.2.3 Frame-based Backward Residue Removal . . . . . . . . . . . 58 3.2.4 Sample-and-Hold Formulation . . . . . . . . . . . . . . . . . 60 3.3 Temporal Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.1 Continuous-Time Objective and optimization . . . . . . . . 61 3.3.2 Causal Continuous-Time Objective and optimization . . . . 63 3.3.3 Derivation of atf−c[n] and btf−c[n] for TF-C . . . . . . . . . 64 3.3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 64 3.3.5 Visual Quality . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Cuboid-wise Factorization . . . . . . . . . . . . . . . . . . . . . . . 70 3.4.1 Spatial-Temporal Cuboid-Wise Factorization . . . . . . . . . 70 3.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 73 3.5 High-Refresh-Rate Display Prototype . . . . . . . . . . . . . . . . . 75 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 ix 4 Discussion 77 4.1 Necessity of multi-rank factorization . . . . . . . . . . . . . . . . . 77 4.2 Block-Wise Factorization for Static Light Field . . . . . . . . . . . 79 4.2.1 Convergence Verification for Cuboid/Block-wise Factoriza- tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 Further Acceleration for Light-field Factorization. . . . . . . . . . . 81 4.3.1 Light-field pre-filtering. . . . . . . . . . . . . . . . . . . . . 81 4.3.2 Color Sequential Initialization. . . . . . . . . . . . . . . . . 81 5 Related Works 83 5.1 Light-Field Depth Estimation . . . . . . . . . . . . . . . . . . . . . 83 5.1.1 Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . 83 5.1.2 Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . . 86 5.2 Light-Field Factored Display . . . . . . . . . . . . . . . . . . . . . . 91 5.2.1 3D Display . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.2 Light Field Displays . . . . . . . . . . . . . . . . . . . . . . 94 5.2.3 Light Field Factorization Algirthms . . . . . . . . . . . . . . 97 6 Conclusion 99 6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.1 View Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.2 Vergence-Accommodation Conflict . . . . . . . . . . . . . . 100 6.1.3 Augmented Factorization . . . . . . . . . . . . . . . . . . . 100 6.1.4 Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    [1] C.-K. Liang, C.-C. Cheng, Y.-C. Lai, L.-G. Chen, and H. H. Chen, “Hardwareefficient belief propagation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 5, pp. 525–537, 2011.
    [2] J. Noraky and V. Sze, “Low power depth estimation of rigid objects for timeof-flight imaging,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 6, pp. 1524–1534, 2019.
    [3] J. J. Clark, “Active photometric stereo.” in IEEE Conference on Computer Vision and Pattern Recognition, vol. 92, 1992, pp. 29–34.
    [4] J. L. G. Bello and M. Kim, “Self-supervised deep monocular depth estimation with ambiguity boosting,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp. 9131–9149, 2021.
    [5] K. Zhou, X. Meng, and B. Cheng, “Review of stereo matching algorithms based on deep learning,” Computational intelligence and neuroscience, vol. 2020, no. 1, p. 8562323, 2020.
    [6] L. Liu, Y. Liu, Y. Lv, and J. Xing, “Lanet: Stereo matching network based on linear-attention mechanism for depth estimation optimization in 3d reconstruction of inter-forest scene,” Frontiers in Plant Science, vol. 13, p. 978564, 2022.
    [7] H. Hirschmuller, “Accurate and efficient stereo processing by semi-global matching and mutual information,” in IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2005, pp. 807–814 vol. 2.
    [8] A. Gershun, “The light field,” Journal of Mathematics and Physics, vol. 18, no. 1-4, pp. 51–151, 1939.
    [9] M. Levoy and P. Hanrahan, “Light field rendering,” in Seminal Graphics Papers: Pushing the Boundaries, Volume 2, 2023, pp. 441–452.
    [10] Y. Furukawa, C. Hernández et al., “Multi-view stereo: A tutorial,” Foundations and Trends® in Computer Graphics and Vision, vol. 9, no. 1-2, pp. 1–148, 2015.
    [11] G. Luo and Y. Zhu, “Hole filling for view synthesis using depth guided global optimization,” IEEE Access, vol. 6, pp. 32 874–32 889, 2018.
    [12] S. Wanner and B. Goldluecke, “Variational light field analysis for disparity estimation and super-resolution,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 3, pp. 606–619, 2014.
    [13] V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4d incident light fields,” ACM Transactions on Graphics, vol. 22, no. 3, pp. 613–620, 2003.
    [14] Z. Li, L. Song, Z. Chen, X. Du, L. Chen, J. Yuan, and Y. Xu, “Relit-neulf: Efficient relighting and novel view synthesis via neural 4d light field,” in ACM International Conference on Multimedia, 2023, pp. 7007–7016.
    [15] C.-T. Huang, J. Chin, H.-H. Chen, Y.-W. Wang, and L.-G. Chen, “Fast realistic refocusing for sparse light fields,” in IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2015, pp. 1176–1180.
    [16] T. Gregory, M. P. Edgar, G. M. Gibson, and P.-A. Moreau, “A gigapixel computational light-field camera,” arXiv preprint arXiv:1910.08338, 2019.
    [17] Y.-L. Hsiao, “VLSI Architecture for High-Quality Belief Propagation with Large Tiles and Conditional Random Fields,” in NTHU, 2017.
    [18] S. Wanner, S. Meister, and B. Goldluecke, “Datasets and benchmarks for densely sampled 4d light fields.” in Vision, Modeling & Visualization, vol. 13, 2013, pp. 225–226.
    [19] J. Li, Z. Lu, G. Zeng, R. Gan, and H. Zha, “Similarity-aware patchwork assembly for depth image super-resolution,” in IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 3374–3381.
    [20] “Middlebury stereo,” vision.middlebury.edu/stereo/, accessed: 2024-06-10.
    [21] H. H. Chen, C. T. Huang, S. S. Wu, C. L. Hung, T. C. Ma, and L. G. Chen, “23.2 a 1920×1080 30fps 611 mw five-view depth-estimation processor for light-field applications,” in IEEE International Solid-State Circuits Conference, 2015, pp. 1–3.
    [22] J. Lee, D. Shin, K. Lee, and H.-J. Yoo, “A 31.2 pJ/disparity· pixel stereo matching processor with stereo SRAM for mobile UI application,” in Symposium on VLSI Circuits. IEEE, 2017, pp. C158–C159.
    [23] W. Wang, J. Yan, N. Xu, Y. Wang, and F.-H. Hsu, “Real-time high-quality stereo vision system in fpga,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 10, pp. 1696–1708, 2015.
    [24] Y.-T. Lu, “Memory-Efficient VLSI Architecture of Cost Volume Generation for High-Range Light-Field Stereo Matching,” in NTHU, 2017.
    [25] J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in ACM Special Interest Group on GRAPHics and Interactive Techniques, 2000, pp. 307–318.
    [26] G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting,” ACM Transactions on Graphics, vol. 31, no. 4, pp. 1–11, 2012.
    [27] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.
    [28] D. Zachariah, M. Sundin, M. Jansson, and S. Chatterjee, “Alternating leastsquares for low-rank matrix reconstruction,” IEEE Signal Processing Letters, vol. 19, no. 4, pp. 231–234, 2012.
    [29] Y.-X. Wang and Y.-J. Zhang, “Nonnegative matrix factorization: A comprehensive review,” IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 6, pp. 1336–1353, 2012.
    [30] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, “Algorithms and applications for approximate nonnegative matrix factorization,” Computational Statistics & Data Analysis, vol. 52, no. 1, pp. 155–173, 2007.
    [31] A. Cichocki, S.-i. Amari, R. Zdunek, R. Kompass, G. Hori, and Z. He, “Extended SMART Algorithms for Non-negative Matrix Factorization,” in Artificial Intelligence and Soft Computing, vol. 4029, 2006, pp. 548–562.
    [32] N. Gillis and F. Glineur, “Accelerated Multiplicative Updates and Hierarchical ALS Algorithms for Nonnegative Matrix Factorization,” Neural Computation, vol. 24, no. 4, pp. 1085–1105, 2012.
    [33] C.-J. Hsieh and I. S. Dhillon, “Fast Coordinate Descent Methods with Variable Selection for Non-Negative Matrix Factorization,” in ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011, pp. 1064–1072.
    [34] F. Heide, G. Wetzstein, R. Raskar, and W. Heidrich, “Adaptive image synthesis for compressive displays,” ACM Transactions on Graphics, vol. 32, no. 4, pp. 1–12, 2013.
    [35] D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3d displays using low-rank light field factorization,” in ACM Special Interest Group on GRAPHics and Interactive Techniques Asia, 2010, pp. 1–10.
    [36] T. Greg, “Large Geometric Models Archive,” https://graphics.stanford.edu/data/3Dscanrep/, accessed: 2024-06-10.
    [37] Panba, “SHATTERING CUBES,” https://www.blendswap.com/blend/ 20738, accessed: 2024-06-10.
    [38] clive9, “Newtons Cradle,” https://www.blendswap.com/blend/18816, accessed: 2024-06-10.
    [39] H. Dennis, “3d wolf Animated and Game-Ready,” https://3dhaupt.com/, accessed: 2024-06-10.
    [40] B. O. Community, Blender - a 3D modelling and rendering package, http://www.blender.org, Stichting Blender Foundation, Amsterdam, 2018.
    [41] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
    [42] G. Luo and Y. Zhu, “Foreground removal approach for hole filling in 3D video and FVV synthesis,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 10, pp. 2118–2131, 2016.
    [43] X. Liu, Y. Zhang, S. Hu, S. Kwong, C.-C. J. Kuo, and Q. Peng, “Subjective and objective video quality assessment of 3D synthesized views with texture/depth compression distortion,” IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 4847–4861, 2015.
    [44] A. Torralba and A. Oliva, “Depth estimation from image structure,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 9, pp. 1226–1238, 2002.
    [45] C. Chen, H. Lin, Z. Yu, S. B. Kang, and J. Yu, “Light field stereo matching using bilateral statistics of surface cameras,” in IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1518–1525.
    [46] C. Kim, H. Zimmer, Y. Pritch, A. Sorkine-Hornung, and M. Gross, “Scene reconstruction from high spatio-angular resolution light fields,” ACM Transactions on Graphics, vol. 32, no. 4, p. 1, 2013.
    [47] Q. Yang, “A non-local cost aggregation method for stereo matching,” in IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1402– 1409.
    [48] X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang, “Segment-tree based cost aggregation for stereo matching,” in IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 313–320.
    [49] “The stanford light field archive from stanford university computer graphics laboratory,” http://lightfield.stanford.edu/papers.html, accessed: 201706-08.
    [50] K. Honauer, O. Johannsen, D. Kondermann, and B. Goldluecke, “A dataset and evaluation methodology for depth estimation on 4D light fields,” in IEEE Asian Conference on Computer Vision, 2016.
    [51] C. C. Cheng, C. T. Li, C. K. Liang, Y. C. Lai, and L. G. Chen, “Architecture design of stereo matching using belief propagation,” in IEEE International Symposium on Circuits and Systems, 2010, pp. 4109–4112.
    [52] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is insensitive to image sampling,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 4, pp. 401–406, 1998.
    [53] H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs on images with radiometric differences,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 9, pp. 1582–1599, 2009.
    [54] N. Y. C. Chang, T. H. Tsai, B. H. Hsu, Y. C. Chen, and T. S. Chang, “Algorithm and architecture of disparity estimation with mini-census adaptive support weight,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 6, pp. 792–805, 2010.
    [55] J. Ko and Y. S. Ho, “Stereo matching using census transform of adaptive window sizes with gradient images,” in Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, 2016, pp. 1–4.
    [56] D. Scharstein, R. Szeliski, and R. Zabih, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” in IEEE Workshop on Stereo and Multi-Baseline Vision, 2001, pp. 131–140.
    [57] J. Sun, N.-N. Zheng, and H.-Y. Shum, “Stereo matching using belief propagation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 7, pp. 787–800, 2003.
    [58] S. Wanner and B. Goldluecke, “Globally consistent depth labeling of 4d light fields,” in IEEE Conference on Computer Vision and Pattern Recognition,2012, pp. 41–48.
    [59] S. Z. Li, Markov random field modeling in image analysis. & Business Media, 2009. Springer Science
    [60] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, “Fast costvolume filtering for visual correspondence and beyond,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 2, pp. 504–511, 2013.
    [61] C. Ttofis and T. Theocharides, “High-quality real-time hardware stereo matching based on guided image filtering,” in Design, Automation Test in Europe Conference Exhibition, 2014, pp. 1–6.
    [62] D. W. Yang, L. C. Chu, C. W. Chen, J. Wang, and M. D. Shieh,“Depthreliability-based stereo-matching algorithm and its vlsi architecture design,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 6, pp. 1038–1050, 2015.
    [63] Y. Y. Boykov and M. P. Jolly, “Interactive graph cuts for optimal boundary region segmentation of objects in n-d images,” in IEEE International Conference on Computer Vision, vol. 1, 2001, pp. 105–112 vol.1.
    [64] T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the advances in the dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 3, pp. 487–499, 2008.
    [65] K. Sakamoto and T. Morii, “Multi-view 3d display using parallax barrier combined with polarizer,” in Advanced Free-Space Optical Communication Techniques/Applications II and Photonic Components/Architectures for Microwave Systems and Displays, vol. 6399. SPIE, 2006, pp. 214–221.
    [66] H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” in ACM Special Interest Group on GRAPHics and Interactive Techniques, 2004, pp. 760–768.
    [67] K. Takahashi, Y. Kobayashi, and T. Fujii, “From focal stack to tensor lightfield display,” IEEE Transactions on Image Processing, vol. 27, no. 9, pp. 4571–4584, 2018.
    [68] L. Si, Q. Wang, and Z. Xiao, “Matching cost fusion in dense depth recovery for camera-array via global optimization,” in IEEE International Conference on Virtual Reality and Visualization, 2014, pp. 180–185.
    [69] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang, “On building an accurate stereo matching system on graphics hardware,” in IEEE International Conference on Computer Vision Workshops, 2011, pp. 467–474.
    [70] M. Levoy, “Light fields and computational imaging,” Computer, vol. 39, no. 8, pp. 46–55, 2006.
    [71] S. B. Gokturk, H. Yalcin, and C. Bamji, “A time-of-flight depth sensor system description, issues and solutions,” in IEEE Conference on Computer Vision and Pattern Recognition Workshop, 2004, pp. 35–35.
    [72] Y. S. Heo, K. M. Lee, and S. U. Lee, “Robust stereo matching using adaptive normalized cross-correlation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 4, pp. 807–822, 2010.
    [73] G. Li, “Stereo matching using normalized cross-correlation in logrgb space,” in IEEE International Conference on Computer Vision in Remote Sensing.IEEE, 2012, pp. 19–23.
    [74] G.-Q. Wei, W. Brauer, and G. Hirzinger, “Intensity-and gradient-based stereo matching using hierarchical gaussian basis functions,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1143–1160,1998.
    [75] X. Song, X. Zhao, L. Fang, H. Hu, and Y. Yu, “Edgestereo: An effective multitask learning network for stereo matching and edge detection,” International Journal of Computer Vision, vol. 128, no. 4, pp. 910–930, 2020.
    [76] M. Poggi, D. Pallotti, F. Tosi, and S. Mattoccia, “Guided stereo matching,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 979–988.
    [77] J. Joglekar, S. S. Gedam, and B. K. Mohan, “Image matching using sift features and relaxation labeling technique—a constraint initializing method for dense stereo matching,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 9, pp. 5643–5652, 2014.
    [78] G. Saygili, L. van der Maaten, and E. A. Hendriks, “Improving segment based stereo matching using surf key points,” in IEEE International Conference on Image Processing. IEEE, 2012, pp. 2973–2976.
    [79] Y. Boykov and O. Veksler, Graph Cuts in Vision and Graphics: Theories and Applications. Springer US, 2006, pp. 79–96.
    [80] J. Sun, N.-N. Zheng, and H.-Y. Shum, “Stereo matching using belief propagation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 7, pp. 787–800, 2003.
    [81] Y. Ohta and T. Kanade, “Stereo by intra- and inter-scanline search using dynamic programming,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-7, no. 2, pp. 139–154, 1985.
    [82] X. Sun, X. Mei, S. Jiao, M. Zhou, and H. Wang, “Stereo matching with reliable disparity propagation,” in IEEE Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, 2011, pp. 132–139.
    [83] N. A. Dodgson, “Autostereoscopic 3d displays,” Computer, vol. 38, no. 8, pp. 31–36, 2005.
    [84] J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33megapixel imaging system,” Journal of Display Technology, vol. 6, no. 10, pp. 422–430, 2010.
    [85] W.-X. Zhao, Q.-H. Wang, A.-H. Wang, and D.-H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Optics Letters, vol. 35, no. 24, pp. 4127–4129, 2010.
    [86] H.-J. Im, B.-J. Lee, H.-k. Hong, and H.-H. Shin, “Auto-stereoscopic 60 view 3d using slanted lenticular lens arrays,” Journal of Information Display, vol. 8, no. 4, pp. 23–26, 2007.
    [87] Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Optics Express, vol. 18, no. 9, pp. 8824–8835, 2010.
    [88] D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” in ACM Special Interest Group on GRAPHics and Interactive Techniques Asia, 2011,pp. 1–10.
    [89] A. Shashua and T. Hazan, “Non-negative tensor factorization with applications to statistics and computer vision,” in International Conference on Machine learning, 2005, pp. 792–799.
    [90] V. D. Blondel, N.-D. Ho, and P. Van Dooren, “Weighted nonnegative matrix factorization and face feature extraction,” Image and Vision Computing, vol. 1, p. 17, 2008.
    [91] A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm,” Ultrasonic imaging, vol. 6, no. 1, pp. 81–94, 1984.
    [92] G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3d: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” in ACM Special Interest Group on GRAPHics and Interactive Techniques, 2011, pp. 1–12.
    [93] J. Zhang, Z. Fan, D. Sun, and H. Liao, “Unified mathematical model for multilayer-multiframe compressive light field displays using lcds,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, no. 3, pp. 1603–1614, 2018.
    [94] K. Maruyama, Y. Inagaki, K. Takahashi, T. Fujii, and H. Nagahara, “A 3d display pipeline from coded-aperture camera to tensor light-field display through cnn,” in 2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019, pp. 1064–1068.
    [95] K. Maruyama, K. Takahashi, and T. Fujii, “Comparison of layer operations and optimization methods for light field display,” IEEE Access, vol. 8, pp. 38 767–38 775, 2020.
    [96] P.-H. Chen, S.-W. Yang, and C.-T. Huang, “A 250-mw 5.4 g-rendered-pixel/s realistic refocusing processor for high-performance five-camera mobile devices,” IEEE Open Journal of the Solid-State Circuits Society, vol. 3, pp. 52–62, 2023.
    [97] F.-C. Huang, D. P. Luebke, and G. Wetzstein, “The light field stereoscope.” in Special Interest Group on GRAPHics and Interactive Techniques emerging technologies, 2015, pp. 24–1.
    [98] X. Liu, K. Kang, and Y. Liu, “Stereoscopic image quality assessment based on depth and texture information,” IEEE Systems Journal, vol. 11, no. 4, pp.2829–2838, 2016.

    QR CODE