簡易檢索 / 詳目顯示

研究生: 楊青峯
Yang, Ching-Feng
論文名稱: Crystallization and Melting Behavior of Enantiomeric Polylactide and the Racemic Blend
左旋聚乳酸及左/右旋聚乳酸等比例摻混之結晶及熔融行為
指導教授: 蘇安仲
口試委員: 陳信龍
阮至正
鄭有舜
蘇秋琿
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 97
中文關鍵詞: 左旋聚乳酸
外文關鍵詞: Racemic Blend
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The approach of combined small/wide-angle X-ray scattering (SAXS/WAXS) and differential scanning calorimetry (DSC), as previously proposed by Su et al. (Macromolecules 2009, 42, 4200) was adopted to determine the equilibrium melting temperature (Tm°) and the fold surface energy (σe) for stereocomplex βc crystals of poly(L-lactide)/poly(D-lactide) (PLLA/PDLA). With gradually increased temperature, the crystalline lamellae approached solid-melt equilibration for reliable construction of the Gibbs-Thomson (GT) melting line. We successfully extracted from the SAXS data the thickness of crystalline lamellae via both Kratky-Porod approximation and model-fitting based on a combination of disk form factor and 1D-lattice structure factor. With crystallinity- corrected heat of fusion ΔHf° ≈ 165 J/g obtained from a combination of DSC and WAXS results, we have estimated from the intercept and the slope (= 2σeTm°/ρΔHf°) of the melting line that equilibrium melting temperature Tm° ≈ 260 °C and fold surface energy σe ≈ 190 mJ m–2.
    Melt-crystallization of racemic polylactide (equimolar PLLA/PDLA) blend upon slow cooling (1 C/min from 270 C) was studied via WAXS, DSC, and Fourier-transform infrared spectroscopy (FTIR). Results indicated extensive development of racemic (32/31) helical pairs below 220 C, followed by emergence of a broad mesomorphic peak in the WAXS profile below 190 C; intensity of this mesophase peak started to decrease at 150 C, with concomitant emergence of WAXS- or DSC-discernible formation of βc crystals. Isothermal measurements at 200 vs. 170 C revealed the presence of low vs. high populations of helical pairs; βc crystals were observed to develop only at 170 C but not at 200 C, indicating the need for adequate population of racemic helical pairs for formation of their mesomorphic clusters in the melt matrix as precursors of βc nuclei. The clear change in the melt structure well before the formation of incipient βc crystals reflects strong driving force under large supercooling toward transformation, but the transformation process is kinetically suppressed: only after extensive development of racemic helices and emergence of mesomorphic clusters in the melt matrix may nucleation occur. These observations suggest that the nucleation process proceeds in elementary units of preformed helical pairs in the melt matrix, with an intermediate stage of clustered helical pairs before incipience of βc crystals.
    Melt-crystallization of PLLA upon slow cooling (1 C/min from 200 C) was studied via SAXS/WAXS, FTIR, and DSC. Results indicated emergence of the form factor of precursory nanograins in the SAXS profiles before presence of α crystals of identifiable WAXS reflections and 107 helices from FTIR, implying that the nucleation of α crystals involves clusters of non-helical conformers (NHC). Results of model-fitting of SAXS profiles to dispersed ellipsoids indicated constant cluster size before saturated population of nanograins as precursors toward crystallization. Synchronous and asynchronous 2D-correlation maps of the amorphous halo in WAXS profiles showed that NHC in the precursory clusters are arranged in primitive order related to the (110) reflection of α crystals. Synchronous and asynchronous 2D-correlation maps between WAXS and FTIR results also indicated strongly correlation between the (110) reflection and 107 helical structure during subsequent crystallization process, indicating adjustment toward helical regularity within the precursory nanograins during transformation to crystalline α form.
    Structural evolution during cold-crystallization of quenched poly(L-lactide) (PLLA) glass upon slow (1 °C/min) heating was examined via a combination of FTIR, SAXS/WAXS, and DSC. The as-quenched glass showed broad absorption in the range of 890 to 940 cm−1 (instead of sharp absorption at 922 cm−1 for 107 helices in α crystals), suggesting distributed helical conformers (DHC) around 32 conformation. Upon heating above the glass transition temperature (Tg ≈ 60 °C), a moderate decrease in the population of DHC and partial loss of interhelical contacts were observed, indicating partial disintegration of clusters of distributed helices; this was then followed by specific emergence of 107 helices at 78 °C, lagging slightly (by 2 °C) behind the start of crystallization endotherm in the DSC trace and emergence of crystalline reflections in the parallel WAXS profiles. In contrast, synchronous 2D correlation map derived from FTIR spectra in the range of 1480−1420 cm−1 revealed splitting of the 1457 cm−1 methyl deformation band in the amorphous matrix to give an additional peak at 1448 cm−1 for interchain contacts upon heating to the temperature range of 60−75 °C, which was replaced by sharp peaks at 1445 and 1466 cm−1 upon subsequent formation of α′ crystals up to 140 °C. This picture of clustered NHC as precursory nuclei was further supported by increases in nucleation density upon cold crystallization at 70 °C for glassy specimens prepared at decreasing cooling rates (ranging from direct liquid-nitrogen quench to 50 °C/min), for which the population of NHC as mesophase showed similar increases. Combined WAXS and DSC results indicated occurrence of α′-to-α transformation in the range of 140 to 160 °C; model-fitting of SAXS profiles with dispersed ellipsoids indicates that this solid-solid transformation proceeds with concurrent nanograin coalescence in view of the simultaneous increases in the oblate major axis 2A, the minor axis 2B, and the center-to-center distance d. For stretch-orientated (100% elongation at 60 ºC) PLLA specimens, 2D WAXS patterns revealed amorphous arcs at ambient temperature, amorphous ring upon heating above Tg (with concomitant shrinkage along the drawing direction), followed by emergence of crystalline arcs retaining the original orientation due to development of crystallites upon further heating. These observations are explained in terms of relaxation of stretched/oriented NHC to facilitate interchain interaction/aggregation of helical conformers (which remained oriented), followed by development of oriented nuclei and subsequent crystal growth.
    Cold-crystallization of racemic polylactide (equimolar PLLA/PDLA) blend upon slow heating (1 C/min from 30 C) was studied via WAXS, DSC, and FTIR. Results indicated that the βc phase of racemic polylactide crystallized first, followed by the formation of α′ crystals. Crystallization mechanisms for α′ and βc crystals are completely different in the racemic blend: intensity increase of the 107 helices of PLLA and 103 helices of PDLA in 922 cm−1 of FTIR are consistent with increase tendency of α′ crystals in terms of the (110)/(200) reflection of WAXS, but intensity of (110) reflection in βc crystal sequentially increased after extensive development of racemic (32/31) helical pairs, as similarly observed in the melt-crystallization case. Incubation at 60 °C resulted in clearly increased α′ crystallinity and decreased βc content in the racemic PLLA/PDLA blend during the subsequent cold-crystallization process, indicating clustering of NHC as precursors of α′ nuclei. Isothermal FTIR measurements between 70 to 85 °C revealed increasing population of 107 or 103 helices (vs. decreasing population of paired 32/31 helices) with increasing incubation temperature Ti above 76 °C, suggesting control of the α′ vs. βc phase ratio via proper incubation.
    To summarize, the process of polymer crystallization is not a one-step process as depicted in the classic theory of polymer crystallization: it is a multi-step process, involving intermediate stages of mesomorphic order. Even though there are nanograin existence before crystals appear for melt crystallization and cold crystallization of PLLA, however, they are different inside conformers, like non-helical arrangement aggregating for melt crystallization but distributed helical cluster for cold crystallization. Nevertheless, detailed structural features within the mesomorphic nanodomains can be different, i.e., non-helical conformers for PLLA but racemic helical pairs in the case of PLLA/PDLA.


    The approach of combined small/wide-angle X-ray scattering (SAXS/WAXS) and differential scanning calorimetry (DSC), as previously proposed by Su et al. (Macromolecules 2009, 42, 4200) was adopted to determine the equilibrium melting temperature (Tm°) and the fold surface energy (σe) for stereocomplex βc crystals of poly(L-lactide)/poly(D-lactide) (PLLA/PDLA). With gradually increased temperature, the crystalline lamellae approached solid-melt equilibration for reliable construction of the Gibbs-Thomson (GT) melting line. We successfully extracted from the SAXS data the thickness of crystalline lamellae via both Kratky-Porod approximation and model-fitting based on a combination of disk form factor and 1D-lattice structure factor. With crystallinity- corrected heat of fusion ΔHf° ≈ 165 J/g obtained from a combination of DSC and WAXS results, we have estimated from the intercept and the slope (= 2σeTm°/ρΔHf°) of the melting line that equilibrium melting temperature Tm° ≈ 260 °C and fold surface energy σe ≈ 190 mJ m–2.
    Melt-crystallization of racemic polylactide (equimolar PLLA/PDLA) blend upon slow cooling (1 C/min from 270 C) was studied via WAXS, DSC, and Fourier-transform infrared spectroscopy (FTIR). Results indicated extensive development of racemic (32/31) helical pairs below 220 C, followed by emergence of a broad mesomorphic peak in the WAXS profile below 190 C; intensity of this mesophase peak started to decrease at 150 C, with concomitant emergence of WAXS- or DSC-discernible formation of βc crystals. Isothermal measurements at 200 vs. 170 C revealed the presence of low vs. high populations of helical pairs; βc crystals were observed to develop only at 170 C but not at 200 C, indicating the need for adequate population of racemic helical pairs for formation of their mesomorphic clusters in the melt matrix as precursors of βc nuclei. The clear change in the melt structure well before the formation of incipient βc crystals reflects strong driving force under large supercooling toward transformation, but the transformation process is kinetically suppressed: only after extensive development of racemic helices and emergence of mesomorphic clusters in the melt matrix may nucleation occur. These observations suggest that the nucleation process proceeds in elementary units of preformed helical pairs in the melt matrix, with an intermediate stage of clustered helical pairs before incipience of βc crystals.
    Melt-crystallization of PLLA upon slow cooling (1 C/min from 200 C) was studied via SAXS/WAXS, FTIR, and DSC. Results indicated emergence of the form factor of precursory nanograins in the SAXS profiles before presence of α crystals of identifiable WAXS reflections and 107 helices from FTIR, implying that the nucleation of α crystals involves clusters of non-helical conformers (NHC). Results of model-fitting of SAXS profiles to dispersed ellipsoids indicated constant cluster size before saturated population of nanograins as precursors toward crystallization. Synchronous and asynchronous 2D-correlation maps of the amorphous halo in WAXS profiles showed that NHC in the precursory clusters are arranged in primitive order related to the (110) reflection of α crystals. Synchronous and asynchronous 2D-correlation maps between WAXS and FTIR results also indicated strongly correlation between the (110) reflection and 107 helical structure during subsequent crystallization process, indicating adjustment toward helical regularity within the precursory nanograins during transformation to crystalline α form.
    Structural evolution during cold-crystallization of quenched poly(L-lactide) (PLLA) glass upon slow (1 °C/min) heating was examined via a combination of FTIR, SAXS/WAXS, and DSC. The as-quenched glass showed broad absorption in the range of 890 to 940 cm−1 (instead of sharp absorption at 922 cm−1 for 107 helices in α crystals), suggesting distributed helical conformers (DHC) around 32 conformation. Upon heating above the glass transition temperature (Tg ≈ 60 °C), a moderate decrease in the population of DHC and partial loss of interhelical contacts were observed, indicating partial disintegration of clusters of distributed helices; this was then followed by specific emergence of 107 helices at 78 °C, lagging slightly (by 2 °C) behind the start of crystallization endotherm in the DSC trace and emergence of crystalline reflections in the parallel WAXS profiles. In contrast, synchronous 2D correlation map derived from FTIR spectra in the range of 1480−1420 cm−1 revealed splitting of the 1457 cm−1 methyl deformation band in the amorphous matrix to give an additional peak at 1448 cm−1 for interchain contacts upon heating to the temperature range of 60−75 °C, which was replaced by sharp peaks at 1445 and 1466 cm−1 upon subsequent formation of α′ crystals up to 140 °C. This picture of clustered NHC as precursory nuclei was further supported by increases in nucleation density upon cold crystallization at 70 °C for glassy specimens prepared at decreasing cooling rates (ranging from direct liquid-nitrogen quench to 50 °C/min), for which the population of NHC as mesophase showed similar increases. Combined WAXS and DSC results indicated occurrence of α′-to-α transformation in the range of 140 to 160 °C; model-fitting of SAXS profiles with dispersed ellipsoids indicates that this solid-solid transformation proceeds with concurrent nanograin coalescence in view of the simultaneous increases in the oblate major axis 2A, the minor axis 2B, and the center-to-center distance d. For stretch-orientated (100% elongation at 60 ºC) PLLA specimens, 2D WAXS patterns revealed amorphous arcs at ambient temperature, amorphous ring upon heating above Tg (with concomitant shrinkage along the drawing direction), followed by emergence of crystalline arcs retaining the original orientation due to development of crystallites upon further heating. These observations are explained in terms of relaxation of stretched/oriented NHC to facilitate interchain interaction/aggregation of helical conformers (which remained oriented), followed by development of oriented nuclei and subsequent crystal growth.
    Cold-crystallization of racemic polylactide (equimolar PLLA/PDLA) blend upon slow heating (1 C/min from 30 C) was studied via WAXS, DSC, and FTIR. Results indicated that the βc phase of racemic polylactide crystallized first, followed by the formation of α′ crystals. Crystallization mechanisms for α′ and βc crystals are completely different in the racemic blend: intensity increase of the 107 helices of PLLA and 103 helices of PDLA in 922 cm−1 of FTIR are consistent with increase tendency of α′ crystals in terms of the (110)/(200) reflection of WAXS, but intensity of (110) reflection in βc crystal sequentially increased after extensive development of racemic (32/31) helical pairs, as similarly observed in the melt-crystallization case. Incubation at 60 °C resulted in clearly increased α′ crystallinity and decreased βc content in the racemic PLLA/PDLA blend during the subsequent cold-crystallization process, indicating clustering of NHC as precursors of α′ nuclei. Isothermal FTIR measurements between 70 to 85 °C revealed increasing population of 107 or 103 helices (vs. decreasing population of paired 32/31 helices) with increasing incubation temperature Ti above 76 °C, suggesting control of the α′ vs. βc phase ratio via proper incubation.
    To summarize, the process of polymer crystallization is not a one-step process as depicted in the classic theory of polymer crystallization: it is a multi-step process, involving intermediate stages of mesomorphic order. Even though there are nanograin existence before crystals appear for melt crystallization and cold crystallization of PLLA, however, they are different inside conformers, like non-helical arrangement aggregating for melt crystallization but distributed helical cluster for cold crystallization. Nevertheless, detailed structural features within the mesomorphic nanodomains can be different, i.e., non-helical conformers for PLLA but racemic helical pairs in the case of PLLA/PDLA.

    ACKNOWLEDGMENT I ABSTRACT II LIST OF FIGURES VII LIST OF TABLES XIV 1. Background 1 1.1. Crystallization of Polymers from Deeply Supercooled Melt or Glassy States 1 1.2. Enantiomeric Polylactides and Their Racemic Stereocomplex 4 References 5 2. Determination of Equilibrium Melting Temperature and Fold Surface Energy for Poly(L-lactide)/Poly(D-lactide) Stereocomplex 9 2.1. Introduction 9 2.2. Experimental Section 10 2.3. Data Analysis 11 2.4. Results and Discussion 11 2.5. Conclusion 12 References 12 3. Extensive Development of Precursory Helical Pairs Prior to Formation of Stereocomplex Crystals in Racemic Polylactide Melt Mixture 17 3.1. Introduction 17 3.2. Experimental Section 18 3.3. Results 19 3.4. Discussion 21 3.5. Conclusion 23 References 24 4. Non-helical Conformers as Nuclei for Melt-crystallization of Poly(L-lactide) 32 4.1. Introduction 32 4.2. Experimental Section 32 4.3. Data Analysis 33 4.4. Results 35 4.5. Discussion 38 4.6. Conclusion 39 References 39 5. Clusters of Non-helical Conformers as Nuclei for Cold-crystallization of Poly(L-lactide) 47 5.1. Introduction 47 5.2. Experimental Section 48 5.3. Results 49 5.4. Discussion 54 5.5. Conclusion 54 References 55 6. Competition between Racemic βc and Chiral α Phases in Stoichiometric PLLA/PDLA Mixture during Cold-crystallization 75 6.1. Introduction 75 6.2. Experimental Section 76 6.3. Results 77 6.4. Discussion 79 6.5. Conclusion 80 References 81 7. Summary, Comments and Recommendations 89 7.1. Summary 89 7.2. Comments 89 7.3. Recommendations 90 Reference 90 Appendix 92

    1. Olmsted, P. D.; Poon, W. C. K.; McLeish, T. C. B.; Terrill, N. J.; Ryan, A. J. Phys. Rev. Lett. 1998, 81, 373–376.
    2. Kaji, K.; Nishida, K.; Kanaya, T.; Matsuba, G.; Konishi, T.; Imai, M. Adv. Polym. Sci. 2005, 191, 187–240.
    3. Doi M.; Edwards S. F. (1986) The Theory of Polymer Dynamics. Oxford University Press, Oxford, Chapters 9, 10, p 350–380.
    4. Shimada, T.; Doi, M.; Okano, K. J. Chem. Phys. 1988, 88, 7181–7186.
    5. Kaji, K. (2002) In: Fakirov, S. (ed) Handbook of Thermoplastic Polyesters, vol 1. Wiley, Weinheim, p 225–251.
    6. Binder, K. Phys. Rev. B 1974, 15, 4425–4447.
    7. Debye, P.; Bueche, A. M. J. Appl. Phys. 1949, 20, 518–525.
    8. Fischer, E. W. (1990) In: Colmenero, J.; Alegra, A. (eds) Basic Features of the Glassy State. World Scientific, Singapore p 172–191.
    9. Fischer, E. W. Physica A 1993, 201, 183–206.
    10. Kanaya, T.; Patkowski, A.; Fischer, E. W.; Seils, J.; Glaeser, H.; Kaji, K. Acta Polym. 1994, 45, 137–142.
    11. Strobl, G. Eur. Phys. J. E 2000, 3, 165–183.
    12. Abe, H.; Kikkawa, Y.; Inoue, Y.; Doi, Y. Biomacromolecules 2001, 2, 1007–1014.
    13. Spinu, M.; Jackson, C.; Keating, M. Y.; Gardner, K. H. J. Macromol. Sci., Pure. Appl. Chem. 1996, A33(10), 1497–1530.
    14. Tsuji, H.; Ikada, Y. Macromol. Chem. Phy. 1996, 197, 3483–3499.
    15. Tsuji, H.; Ikada, Y. Polymer 1999, 40, 6699–6708.
    16. Sarasua, J. R.; Lo´pez Arraiza, A.; Balerdi, P.; Maiza, I. J. Mater. Sci. 2005, 40, 1855–1862.
    17. Tsuji, H.; Horii, F.; Hyon, S. H.; Ikada, Y. Macromolecules 1991, 24, 2719–2724.
    18. Okihara, T.; Tsuji, M.; Kawaguchi, A.; Katayama, K.; Tsuji, H.; Hyon, S. H.; Ikada, Y. J. Macromol. Sci. Phy. 1991, 30, 119–140.
    19. Tsuji, H.; Hyon, S. H.; Ikada, Y. Macromolecules 1991, 24, 5651–5656.
    20. Tsuji, H.; Hyon, S. H.; Ikada, Y. Macromolecules 1991, 24, 5657–5662.
    21. Tsuji, H.; Hyon, S. H.; Ikada, Y. Macromolecules 1992, 25, 2940–2946.
    22. Tsuji, H.; Horii, F.; Nakagawa, M.; Ikada, Y.; Odani, H.; Kitamaru, R. Macromolecules 1992, 25, 4114–4118.
    23. Tsuji, H.; Ikada, Y. Macromolecules 1992, 25, 5719–5723.
    24. Tsuji, H.; Ikada, Y. Macromolecules 1993, 26, 6918–6926.
    25. Tsuji, H.; Ikada, Y.; Hyon, S. H.; Kimura, Y.; Kitao, T. J. Appl. Polym. Sci. 1994, 51, 337–344.
    26. Tsuji, H. Polymer 2000, 41, 3621–3630.
    1. DeSantis, P.; Kovacs, A. J. Biopolymers 1968, 6, 299–306.
    2. Hoogsteen, W.; Postema, A. R.; Pennings, A. J.; Brinke, G.; Zugenmaier, P. Macromolecules 1990, 23, 634–642.
    3. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Polymer 2000, 41, 8909–8919.
    4. Sawai, D.; Takahashi, K.; Sasashige, A.; Nakamura, K.; Kanamoto, T.; Hyon, S. H. Macromolecules 2003, 36, 3601–3605.
    5. Sawai, D.; Yokoyama, T.; Kanamoto, T.; Sungil, M.; Hyon, S. H.; Myasnikova, L. P. Macromol Symp 2006, 242, 93–103.
    6. Takahashi, K.; Sawai, D.; Yokoyama, T.; Kanamoto, T.; Hyon, S. H. Polymer 2004, 45, 4969–4976.
    7. Okihara, T.; Tsuji, M.; Kawaguchi, A.; Katayama, K.; Tsuji, H.; Hyon, S. H.; Ikada, Y. J. Macromol. Sci., Macromol. Phys. 1991, B30, 119–140.
    8. Brizzolara, D.; Cantow, H. J.; Diederichs, K.; Keller, E.; Domb, A. J. Macromolecules 1996, 29, 191–197.
    9. Kalb, B.; Pennings, A. J. Polymer 1980, 21, 607–612.
    10. Kobayashi, J.; Asahi, T.; Ichikawa, M.; Oikawa, A.; Suzuki, H.; Watanabe, T.; Fukada, E.; Shikinami, Y. J. Appl. Phys. 1995, 77, 2957–2973.
    11. Miyata, T.; Masuko, T. Polymer 1997, 38, 4003–4009.
    12. Puiggali, J.; Ikada, Y.; Tsuji, H.; Cartier, L.; Okihara, T.; Lotz, B. Polymer 2000, 41, 8921–8930.
    13. Cartier, L.; Okihara, T.; Lotz, B. Macromolecules 1997, 30, 6313–6322.
    14. Tsuji, H.; Ikada, Y. Macromol. Chem. Phy. 1996, 197, 3483–3499.
    15. Kalb, B.; Pennings, A. J. Polymer 1980, 21, 607–612.
    16. Tsuji, H; Ikada, Y. Polymer 1995, 36, 2709–2716.
    17. Lai, W.-C.; Liau, W.-B.; Lin, T.-T. Lin Polymer 2004, 45, 3073–3043.
    18. Nijenhuis, A. J.; Pennings A.J. Polymer 1996, 37, 5849–5857.
    19. Di Lorenzo, M. L. J. Appl. Polym. Sci. 2006, 100, 3145–3151.
    20. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J. Macromolecules 2008, 41, 1352–1357.
    21. Vasanthakumari, R.; Pennings, A.J. Polymer 1983, 24, 175–178.
    22. He, Y; Fan, Z; Hu, Y; Wu, T; Wei, J; Li, S. European Polymer Journal 2007, 43, 4431–4439.
    23. Marand, H.; Xu, J.; Srinivas, S. Macromolecules 1998, 31, 8219–8229.
    24. Su, C. H.; Jeng, U.; Chen, S. H.; Cheng, C. Y.; Lee, J. J.; Lai, Y. H.; Su, W. C.; Tsai, J. C.; Su, A. C. Macromolecules 2009, 42, 4200–4207.
    25. Lin, Y. H. Master thesis 2010 in NTHU.
    26. Sarasua, J. R.; Lo´pez Arraiza, A.; Balerdi, P.; Maiza, I. J. Mater. Sci. 2005, 40, 1855–1862.
    27. Sawai, D.; Tsugane, Y.; Tamada, M.; Kanamoto, T.; Moon, S.; Hyon, S.-H. J. Polym. Sci. Polym. Phys. 2007, 45, 2632–2639.
    1. Bosscher, F.; ten Brinke, G.; Challa, G. Macromolecules 1982, 15, 1442–1444.
    2. Koennecke, K.; Rehage, G. Makromol. Chem. 1983, 184, 2679–2691.
    3. Matsubayshi, H.; Chatani, Y.; Tadokoro, H.; Dumas, P.; Spassky, N.; Gigwalt, P. Macromolecules 1977, 10, 996–1002.
    4. Grenier, D.; Prud’homme, R. E.; Leborgne, A.; Spassky, N. J. Polym. Sci., Polym. Phys. 1984, 22, 577–587.
    5. Lavallee, C.; Prud’homme, R. E. Macromolecules 1989, 22, 2438–2446.
    6. Sakakihara, H.; Takakashi, Y.; Tadokoro, H.; Oguni, N.; Tani, H. Macromolecules 1973, 6, 205–212.
    7. Okihara, T.; Tsuji, M,; Kawaguchi, A.; Katayama, K.; Tsuji, H.; Hyon, H.; Ikada, Y. J. Macromol. Sci., Macromol. Phys. 1991, B30, 119–140.
    8. Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S. H. Macromolecules 1987, 20, 904–906.
    9. Brizzolara, D.; Cantow, H. J.; Diederichs, K.; Keller, E.; Domb, A. J. Macromolecules 1996, 29, 191–197.
    10. Cartier, L.; Okihara, T.; Lotz, B. Macromolecules 1997, 30, 6313–6322.
    11. Zhang, J.; Sato, H.; Tsuji, H.; Noda, I.; Ozaki, Y. Macromolecules 2005, 38, 1822–1828.
    12. Sarasua, J. R.; Rodriguez, N. L.; Arraiza, A. L.; Meaurio, E. Macromolecules 2005, 38, 8362–8371.
    13. Kang, S.; Hsu, S. L.; Stidham, H. D.; Smith, P. B.; Leugers, M. A.; Yang, X. Macromolecules 2001, 34, 4542–4548.
    14. Krikorian, V.; Pochan, D. J. Macromolecules 2005, 38, 6520–6527.
    15. Zhang, J.; Duan, Y.; Sato, H.; Thuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Macromolecules 2005, 38, 8012–8021.
    16. Meaurio, E.; Lopez-Rodriguez, N.; Sarasua, J. R. Macromolecules 2006, 39, 9291–9301.
    17. Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Macromolecules 2007, 40, 6898–6905.
    18. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J. Macromolecules 2007, 40, 1049–1054.
    19. Huang, S. J.; Onyari, J. M. J. Macromol. Sci. A 1996, 33, 571–584.
    20. Yang, C. F.; Su, A. C.; Su, C. H.; Jeng, U. Unpublished results.
    21. Lan, Y. K.; Su, A. C. Macromolecules 2010, 43, 7908–7912.
    22. Hoffman, J. D. Polymer 1983, 24, 3–26.
    23. Hoffman, J. D.; Miller, R. L. Polymer 1997, 38, 3151–3212.
    24. Chen, S. H.; Wu, Y. H.; Su, C. H.; Jeng, U.; Hsieh, C. C.; Su, A. C.; S. A. Chen Macromolecules 2007, 40, 5353–5359.
    25. Su, C. H.; Jeng, U.; Chen, S. H.; Lin, S. J.; Ou, Y. T.; Chuang, W. T.; Su, A. C. Macromolecules 2008, 41, 7630–7636.
    26. Su, C. H.; Jeng, U.; Chen, S. H.; Lin, S. J.; Wu, W. R.; Chuang, W. T.; Tsai, J. C.; Su, A. C. Macromolecules 2009, 42, 6656–6664.
    27. Lotz, B. Eur. Phys. J. E 2000, 3, 185–194 and references cited therein.
    28. Strobl, G. Eur. Phys. J. E 2000, 3, 165–183 and references cited therein.
    29. Strobl, G. Rev. Mod. Phys. 2009, 81, 1287–1300.
    30. Men, M.; Rieger, J.; Strobl G. Phys. Rev. Lett. 2003, 91, 095502.
    31. Tsuji, H.; Hyon, S. H.; Ikada, Y. Macromolecules 1991, 24, 5651–5656.
    1. Chen, S. H.; Su, A. C.; Chou, H. L.; Peng, K. Y.; Chen, S. A. Macromolecules 2004, 37, 167–173.
    2. Chen, S. H.; Su, A. C.; Han, S. R.; Chen, S. A.; Lee, Y. Z. Macromolecules 2004, 37, 181–186.
    3. Chen, S. H.; Su, C. H.; Su, A. C.; Chen, S. A. J. Phys. Chem. B 2004, 108, 8855–8861.
    4. Chen, S. H.; Chou, H. L.; Su, A. C.; Chen, S. A. Macromolecules 2004, 37, 6833–6838.
    5. Jeng, U.; Hsu, C. H.; Sheu, H. S.; Lee, H. Y.; Inigo, A. R.; Chiu, H. C.; Fann, W. S.; Chen, S. H.; Su, A. C.; Lin, T. L.; Peng, K. Y.; Chen, S. A. Macromolecules 2005, 38, 6566–6574.
    6. Chen, S. H.; Su, A. C.; Chen, S. A. J. Phys. Chem. B 2005, 109, 10067–10072.
    7. Chen, S. H.; Su, A. C.; Chen, S. A. Macromolecules 2006, 39, 9143–9149.
    8. Chen, S. H.; Wu, Y. H.; Su, C. H.; Jeng, U.; Hsieh, C. C.; Su, A. C.; Chen, S. A. Macromolecules 2007, 40, 5353–5359.
    9. Kaji, K.; Nishida, K.; Kanaya, T.; Matsuba, G.; Konishi, T.; Imai, M. Adv. Polym. Sci. 2005, 191, 187–240.
    10. Schultz, J. M.; Lin, J. S.; Hendricks, R. W.; Petermann, J.; Gohil, R. M. J. Polym. Sci., Polym. Phys. 1981, 19, 609–620.
    11. Heeley, E. L.; Poh, C. K.; Li, W.; Maidens, A.; Bras, W.; Dolbnya, I. P.; Gleeson, A. J.; Terrill, N. J.; Fairclough, J. P. A.; Olmsted, P. D.; Ristic, R. I.; Hounslow, M. J.; Ryan, A. J. Faraday Discuss. 2002, 122, 343–361.
    12. Wang, Z. G.; Hsiao, B. S.; Sirota, E. B.; Srinivas, S. Polymer 2000, 41, 8825–8832.
    13. Fougnies, C.; Damman, P.; Villers, D.; Dosiere, M.; Koch, M. H. J. Macromolecules 1997, 30, 1385–1391.
    14. Mano, J. F.; Wang, Y.; Viana, J. C.; Denchev, Z.; Oliveira, M. J. Macromol. Mater. Eng. 2004, 289, 910–915.
    15. Terrill, N. J.; Fairclough, P. A.; Towns-Andrews, E.; Komanschek, B. U.; Young, R. J.; Ryan, A. J. Polymer 1998, 39, 2381–2385.
    16. Imai, M.; Kaji, K.; Kanaya, T. Phys. Rev. Lett.1993, 71, 4162–4165.
    17. Penn, R. L. J. Phys. Chem. B 2004, 108, 12707–12712.
    18. Strobl, G. Eur. Phys. J. E 2000, 3, 165–183.
    19. Ryan, A. J.; Fairclough, J. P. A.; Terrill, N. J.; Olmsted, P. D.; Poon, W. C. K. Faraday Discuss. 1999, 112, 13–29.
    20. Su, C. H.; Jeng, U.; Chen, S. H.; Lin, S. J.; Ou, Y. T.; Chuang, W. T.; Su, A. C. Macromolecules 2008, 41, 7630–7636.
    21. Su, C. H.; Jeng, U.; Chen, S. H.; Lin, S. J.; Wu, W. R.; Chuang, W. T.; Tsai, J. C.; Su, A. C. Macromolecules 2009, 42, 6656–6664.
    22. Yang, C. F.; Huang, Y. F. ; Ruan, J. ; Su, A. C. Macromolecules 2012, 45,872–878.
    23. Noda, I. Appl. Spectrosc. 1993, 47, 1329–1336.
    24. Noda, I.; Dowrey, A. E.; Marott, C.; Story, G. M.; Ozaki, Y. Appl. Spectrosc. 2000, 54, 236A–248A.
    25. Noda, I.; Ozaki, Y. Two-Dimensional Correlation Spectroscopy; John Wiley & Sons: Chichester, UK, 2004.
    26. Smirnova, D. S.; Kornfield, J. A.; Lohse, D. J. Macromolecules 2011, 44, 6836–6848.
    27. Guo, L.; Spegazzini, N.; Sato, H.; Hashimoto, T.; Masunaga, H.; Sasaki, S.; Takata, M.; Ozaki, Y. Macromolecules 2012, 45, 313–328.
    28. De Santis, P.; Kovacs, A. J. Biopolymer 1968, 6, 299−306.
    29. Hoogsteen, W.; Postema, A. R.; Pennings, A. J.; ten Brinke, G.; Zugenmaier, P. Macromolecules 1990, 23, 634–642.
    30. Miyata, T.; Masuko, T. Polymer 1997, 38, 4003–4009.
    31. Sasaki, S.; Asakura, T. Macromolecules 2003, 36, 8385–8390.
    1. Leenslag, J. W.; Pennings, A. J.; Bos, R. R. M.; Rozema, F. R.; Boering, G. Biomaterials 1987, 8, 311−314.
    2. Vanionpaa, S.; Rokkamen, P.; Tormala, P. Prog. Polym. Sci. 1989, 14, 679−716.
    3. Vert, M.; Li, S.; Garreau, H. Macromol. Symp. 1995, 98, 633−642.
    4. Ikada, Y.; Shikinami, Y.; Hara, Y.; Tagawa, M.; Fukuda, E. J. Biomed. Mater. Res. 1996, 30, 553−558.
    5. Ikada, Y.; Tsuji, H. Macromol. Rapid Commun. 2000, 21, 117−132.
    6. Drumright, R. E.; Gruber, P. R.; Henton, D. E. Adv. Mater. 2000, 12, 1841−1846.
    7. Zhu, K. L.; Xiangzhou, L.; Shilin, Y. J. Appl. Polym. Sci. 1990, 39, 1−9.
    8. Bergsma, J. E.; Bos, R. R. M.; Rozema, F. R.; Jong, W. D.; Boering, G. J. Mater. Sci.: Mater. Med. 1996, 7, 1−7.
    9. Fambri, L.; Pergoretti, A.; Fenner, R.; Incardona, S. D.; Migliarisi, C. Polymer 1997, 38, 79−85.
    10. Miyata, T.; Masuko, T. Polymer 1997, 38, 4003–4009.
    11. Puiggali, J.; Ikada, Y.; Tsuji, H.; Cartier, L.; Okihara, T.; Lotz, B. Polymer 2000, 41, 8921−8930.
    12. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Polymer 2000, 41, 8909−8919.
    13. Zhang, J. M.; Duan, Y.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Macromolecules 2005, 38, 8012−8021.
    14. Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Elkoun, S.; Vanmansart, C. Macromolecules 2010, 43, 1488−1498.
    15. Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Rochas, C. Macromolecules 2010, 43, 7228−7237.
    16. Zhang, J.; Duan, Y.; Domb, A. J.; Ozaki, Y. Macromolecules 2010, 43, 4240−4246.
    17. Yang, C. F.; Huang, Y. F.; Ruan, J.; Su, A. C. Macromolecules 2012, 45, 872−878.
    18. Kang, S.; Hsu, S. L.; Stidham, H. D.; Smith, P. B.; Leugers, M. A.; Yang, X. Macromolecules 2001, 34, 4542−4548.
    19. Krikorian, V.; Pochan, D. J. Macromolecules 2005, 38, 6520−6527.
    20. Meaurio, E.; Lopez-Rodriguez, N.; Sarasua, J. R. Macromolecules 2006, 39, 9291−9301.
    21. Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Macromolecules 2007, 40, 6898−6905.
    22. Zhang, J.; Tsuji, H.; Noda, I.; Ozaki, Y. J. Phys. Chem. B 2004, 108, 11514−11520.
    23. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J. Macromolecules 2007, 40, 1049−1054.
    24. Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N.; Nakajima, K.; Matsuda, M. Macromolecules 2007, 40, 9463−9469.
    25. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J. Macromolecules 2008, 41, 1352−1357.
    26. Su, C. H.; Jeng, U.; Chen, S. H.; Lin, S. J.; Ou, Y. T.; Chuang, W. T.; Su, A. C. Macromolecules 2008, 41, 7630–7636.
    27. Su, C. H.; Jeng, U.; Chen, S. H.; Lin, S. J.; Wu, W. R.; Chuang, W. T.; Tsai, J. C.; Su, A. C. Macromolecules 2009, 42, 6656–6664.
    28. Richter, D.; Schneiders, D.; Monkenbusch, M.; Willner, L.; Fetters, L. J.; Huang, J. S.; Lin, M.; Mortensen, K.; Fargo, B. Macromolecules 1997, 30, 1053–1068.
    1. Leenslag, J. W.; Pennings, A. J.; Bos, R. R. M.; Rozema, F. R.; Boering, G. Biomaterials 1987, 8, 311−314.
    2. Vanionpaa, S.; Rokkamen, P.; Tormala, P. Prog. Polym. Sci. 1989, 14, 679−716.
    3. Vert, M.; Li, S.; Garreau, H. Macromol. Symp. 1995, 98, 633−642.
    4. Ikada, Y.; Shikinami, Y.; Hara, Y.; Tagawa, M.; Fukuda, E. J. Biomed. Mater. Res. 1996, 30, 553−558.
    5. Ikada, Y.; Tsuji, H. Macromol. Rapid Commun. 2000, 21, 117−132.
    6. Drumright, R. E.; Gruber, P. R.; Henton, D. E. Adv. Mater. 2000, 12, 1841−1846.
    7. Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S. H. Macromolecules 1987, 20, 904−906.
    8. Okihara, T.; Tsuji, M,; Kawaguchi, A.; Katayama, K.; Tsuji, H.; Hyon, H.; Ikada, Y. J. Macromol. Sci., Macromol. Phys. 1991, B30, 119−140.
    9. Brizzolara, D.; Cantow, H. J.; Diederichs, K.; Keller, E.; Domb, A. J. Macromolecules 1996, 29, 191−197.
    10. Cartier, L.; Okihara, T.; Lotz, B. Macromolecules 1997, 30, 6313−6322.
    11. Zhang, J.; Sato, H.; Tsuji, H.; Noda, I.; Ozaki, Y. Macromolecules 2005, 38, 1822−1828.
    12. Sarasua, J. R.; Rodriguez, N. L.; Arraiza, A. L.; Meaurio, E. Macromolecules 2005, 38, 8362−8371.
    13. Kang, S.; Hsu, S. L.; Stidham, H. D.; Smith, P. B.; Leugers, M. A.; Yang, X. Macromolecules 2001, 34, 4542−4548.
    14. Krikorian, V.; Pochan, D. J. Macromolecules 2005, 38, 6520−6527.
    15. Zhang, J.; Duan, Y.; Sato, H.; Thuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Macromolecules 2005, 38, 8012−8021.
    16. Meaurio, E.; Lopez-Rodriguez, N.; Sarasua, J. R. Macromolecules 2006, 39, 9291−9301.
    17. Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Macromolecules 2007, 40, 6898−6905.
    18. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J. Macromolecules 2007, 40, 1049−1054.
    19. Fujita, M.; Sawayanagi, T.; Abe, H.; Tanaka, T.; Iwata, T.; Ito, K.; Fujisawa, T.; Maeda, M. Macromolecules 2008, 41, 2852−2858.
    20. Yang, C. F.; Huang, Y. F.; Ruan, J.; Su, A. C. Macromolecules 2012, 45, 872−878.
    1. Olmsted, P. D.; Poon, W. C. K.; McLeish, T. C. B.; Terrill, N. J.; Ryan, A. J. Phys. Rev. Lett. 1998, 81, 373–376.
    2. Ryan, A. J.; Fairclough, J. P. A.; Terrill, N. J.; Olmsted, P. D.; Poon, W. C. K. Faraday Discuss. 1999, 112, 13–29, and references therein.
    3. Kaji, K.; Nishida, K.; Kanaya, T.; Matsuba, G.; Konishi, T.; Imai, M. Adv. Polym. Sci. 2005, 191, 187–240, and references therein.
    4. Schultz, J. M.; Lin, J. S.; Hendricks, R. W.; Petermann, J.; Gohil, R. M. J. Polym. Sci., Part B: Polym. Phys. 1981, 19, 609–620.
    5. Heeley, E. L.; Poh, C. K.; Li, W.; Maidens, A.; Bras, W.; Dolbnya, I. P.; Gleeson, A. J.; Terrill, N. J.; Fairclough, J. P. A.; Olmsted, P. D.; Ristic, R. I.; Hounslow, M. J.; Ryan, A. J. Faraday Discuss. 2003, 122, 343–361.
    6. Howe, C.; Vasanthan, N.; MacClamrock, C.; Sankar, S.; Shin, I. D.; Simonsen, I. K.; Tonelli, A. E. Macromolecules 1994, 27, 7433−7436.
    7. Ohya, Y.; Takamido, S.; Nagahama, K.; Ouchi, T.; Ooya, T.; Katoono, R.; Yui, N. Macromolecules 2007, 40, 6441−6444.
    8. Marubayashi, H.; Asai, S.; Sumita, M. Macromolecules 2012, 45, 1384−1397.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE