簡易檢索 / 詳目顯示

研究生: 陳奕宏
Chen, Yi-Hung
論文名稱: 斑馬魚粒線體型絲胺酸羥基甲基轉移酵素之表現、純化以及結構特性分析
Expression, Purification and Structural Characterization of Zebrafish Mitochondrial Serine Hydroxymethyltransferase
指導教授: 陳俊榮
Chen, Chun-Jung
口試委員: 楊裕雄
翁秉霖
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 54
中文關鍵詞: 斑馬魚絲胺酸羥基甲基轉移酵素同步輻射圓二色圖譜儀動態光散射粒徑分析儀小角度 X 光散射實驗
外文關鍵詞: Zebrafish, Serine Hydroxymethyltransferase, SRCD, DLS, SAXS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 絲胺酸羥基甲基轉移酵素(SHMT)普遍存在自然界中,包含原核生物和真核生物體內,催化許多重要的新陳代謝,包含葉酸代謝。許多生物的絲胺酸羥基甲基轉移酵素已經被廣泛研究其功能,有研究指出該酵素與相關代謝失衡將導致許多疾病,包含癌症,因此絲胺酸羥基甲基轉移酵素具有發展相關藥物的潛力。斑馬魚是近年來興起的實驗動物模型,其絲胺酸羥基甲基轉移酵素已經藉由大腸桿菌大量表現純化,並研究其生化功能,然而尚未有任何結構資訊。在這篇論文中,我們大量表現與純化了斑馬魚的粒線體型絲胺酸羥基甲基轉移酵素(zmSHMT),藉由動態光散射粒徑分析儀(DLS)來偵測蛋白質溶液的同質性,同步輻射圓二色圖譜儀(SRCD)來偵測蛋白質中二級結構的比例,以及小角度 X 光散射實驗(SAXS)得到蛋白質在溶液中的低解析度模型與動態結構資訊。結合以上實驗結果,我們發現比起其他已知其蛋白質結構的真核生物(包含人類、兔子、老鼠),斑馬魚的粒線體型絲胺酸羥基甲基轉移酵素具有較多 $\beta$-摺板的二級結構,以及較大的巨分子粒子半徑,同時發現由斑馬魚的粒線體型絲胺酸羥基甲基轉移酵素,四個單聚體結合成四聚體的三級結構,具有較為拉長的結構形狀,因而與其他哺乳類酵素在結構特性上有所不同。


    Serine hydroxymethyltransferase (SHMT), widely distributed in nature including Prokaryotic and Eukaryotic organisms, catalyzes several important biosynthesis reactions, such as in folate metabolism. Functions of SHMTs have been extensively studied in many living systems, and enzymic imbalance in serine and folate metabolism have been reported to cause diseases including cancer. SHMT can be target for designing and developing inhibitors which could be used as anticancer drugs. The zebrafish has risen to be a prominent animal model because it is easy to grow and breed and has comparable organs and tissues with mammals. Zebrafish Mitochondrial Serine Hydroxymethyltransferase(zmSHMT) has been expressed in E. coli and studied, but structural information remains unknown. In this thesis, Dynamic Light Scattering(DLS) serves as homogeneity indicator during purification, Synchrotron Radiation Circular Dichroism(SRCD) helps identifying secondary structures, and Small-Angel X-ray Scattering(SAXS) helps calculating hydrodynamic radius information and resolving low resolution structural information in solution. With above results, zmSHMT shows more $\beta$-sheet secondary structure and larger size than that of other existing structures of Eukaryotic species including human, rabbit and mouse, which also imply elongated tertiary structure that may lead to differences from mammals.

    1 Introduction 1 1.1 Zebrafish Mitochondrial Serine Hydroxymethyltransferase(zmSHMT) 1.2 Synchrotron Radiation Circular Dichroism(SRCD) 1.3 DynamicLight Scattering(DLS) 1.4 Small-Angle X-ray Scattering(SAXS) 2 Methodology and Experiment 2.1 Expression and Purification 2.2 Synchrotron Radiation Circular Dichroism(SRCD) 2.3 Dynamic Light Scattering(DLS) 2.4 Small-Angle X-ray Scattering(SAXS) 3 Results and Discussion 3.1 Purification and DLS Measurement 3.2 Synchrotron Radiation Circular Dichroism(SRCD) 3.3 Small-Angle X-ray Scattering(SAXS) 3.4 Crystallization Strategies 3.5 Conclusion 4 References

    [1] Montserrat C Anguera, Martha S Field, Cheryll Perry, Haifa Ghandour, En- Pei Chiang, Jacob Selhub, Barry Shane, and Patrick J Stover. Regulation of Folate-mediated One-carbon Metabolism by 10-Formyltetrahydrofolate Dehy- drogenase. Journal of Biological Chemistry, 281(27):18335–18342, July 2006.
    [2] Rita Florio, Martino Luigi di Salvo, Mirella Vivoli, and Roberto Contestabile. Serine hydroxymethyltransferase: a model enzyme for mechanistic, structural, and evolutionary studies. Biochimica et biophysica acta, 1814(11):1489–96, November 2011.
    [3] K Snell, Y Natsumeda, J N Eble, J L Glover, and G Weber. Enzymic imbal- ance in serine metabolism in human colon carcinoma and rat sarcoma. British Journal of Cancer, 57(1):87–90, January 1988.
    [4] Henk J Blom and Yvo Smulders. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. Journal of Inherited Metabolic Disease, 34(1):75–81, February 2011.
    [5] S Agrawal, A Kumar, V Srivastava, and B N Mishra. Cloning, expression, activity and folding studies of serine hydroxymethyltransferase: a target en- zyme for cancer chemotherapy, 2003.
    [6] P J Stover, L H Chen, J R Suh, D M Stover, K Keyomarsi, and B Shane. Molecular cloning, characterization, and regulation of the human mitochon- drial serine hydroxymethyltransferase gene. The Journal of Biological Chem- istry, 272(3):1842–1848, January 1997.
    [7] JN Scarsdale, G Kazanina, and S Radaev. Crystal structure of rabbit cytoso- lic serine hydroxymethyltransferase at 2.8 ̊AResolution : Mechanistic Impli- cations. Biochemistry, 38(26):8347–8358, 1999.
    [8] Doletha M. E. Szebenyi, Xiaowen Liu, Irina A. Kriksunov, Patrick J. Stover, and Daniel J. Thiel. Structure of a murine cytoplasmic serine hydroxymethyl- transferase quinonoid ternary complex: evidence for asymmetric obligate dimers. Biochemistry, 39(44):13313–13323, November 2000.
    [9] S B Renwick, K Snell, and U Baumann. The crystal structure of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy. Structure, 6(9):1105–1116, September 1998.
    [10] David Jonah Grunwald and Judith S Eisen. Headwaters of the zebrafish – emergence of a new model vertebrate. Nature Reviews. Genetics, 3(9):717– 724, September 2002.
    [11] Wen-Ni Chang. Cloning, expression, purification, and characterization of ze- brafish serine hydroxymethyltransferase. Master thesis, National Cheng Kung University, 2006.
    [12] B Venkatesha, J B Udgaonkar, N A Rao, and H S Savithri. Reversible un- folding of sheep liver tetrameric serine hydroxymethyltransferase. Biochimica et Biophysica Acta, 1384(1):141–152, April 1998.
    [13] Rasmus Hø iberg Nielsen, A Pernille Tofteng Shelton, Kasper K Sø rensen, Manfred Roessle, Dimitri I Svergun, Peter W Thulstrup, Knud J Jensen, and Lise Arleth. 3- Instead of 4-helix formation in a de novo designed protein in solution revealed by small-angle X-ray scattering. Chembiochem : a European Journal of Chemical Biology, 9(16):2663–2672, November 2008.
    [14] Ma ́rcio H L Arndt, Cristiano L P de Oliveira, Wiliam C B R ́egis, Iris L Torri- ani, and Marcelo M Santoro. Small angle x-ray scattering of the hemoglobin from Biomphalaria glabrata. Biopolymers, 69(4):470–479, August 2003.
    [15] R H Jacobson and B W Matthews. Crystallization of beta-galactosidase from Escherichia coli. Journal of Molecular Biology, 223(4):1177–1182, February 1992.
    [16] R H Jacobson, X.-J. Zhang, R F DuBose, and B W Matthews. Three-dimensional structure of [beta]-galactosidase from E. coli. Nature, 369(6483):761–766, June 1994.
    [17] Yasumasa Morimoto, Takashi Nakagawa, and Masaki Kojima. Small-angle X-ray scattering constraints and local geometry like secondary structures can construct a coarse-grained protein model at amino acid residue resolution. Biochemical and biophysical research communications, January 2013.
    [18] Wei-Qiang Chen, Anita Salmazo, Matti Myllykoski, Bj ̈orn Sjo ̈blom, Martin Bidlingmaier, Arnold Pollak, Peter Baumga ̈rtel, Kristina Djinovic-Carugo, Petri Kursula, and Gert Lubec. Purification of recombinant growth hormone by clear native gels for conformational analyses: preservation of conformation and receptor binding. Amino Acids, 39(3):859–869, August 2010.
    [19] Daizo Hamada, Takashi Higurashi, Kouta Mayanagi, Tomoko Miyata, Takashi Fukui, Tatsuya Iida, Takeshi Honda, and Itaru Yanagihara. Tetrameric structure of thermostable direct hemolysin from vibrio para- haemolyticus revealed by ultracentrifugation, small-angle X-ray scattering and electron microscopy. Journal of Molecular Biology, 365(1):187–195, Jan- uary 2007.
    [20] W A Stanley, A Sokolova, A Brown, D T Clarke, M Wilmanns, and D I Svergun. Synergistic use of synchrotron radiation techniques for biological samples in solution: a case study on protein-ligand recognition by the per- oxisomal import receptor Pex5p. Journal of Synchrotron Radiation, 11(Pt 6):490–496, November 2004.
    [21] Xinguo Hong and Quan Hao. Combining solution wide-angle X-ray scattering and crystallography: determination of molecular envelope and heavy-atom sites. Journal of Applied Crystallography, 42(Pt 2):259–264, April 2009.
    [22] Song-Chiao Huang. SAXS reveals solution structures of Gelsolin G2-G3 frag- ment and actin-peptide complex. Master thesis, National Tsing Hua Univer- sity, 2012.
    [23] Robert William Janes and Bonnie Ann Wallace. An Introduction to Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy. In Bonnie Ann Wallace and Robert William Janes, editors, Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spec- troscopy, pages 1–18. IOS Press, 2009.
    [24] Sharon M Kelly, Thomas J Jess, and Nicholas C Price. How to study pro- teins by circular dichroism. Biochimica et Biophysica Acta, 1751(2):119–139, August 2005.
    [25] Matthieu R ́efr ́egiers, Frank Wien, Ha Phuong Ta, Lavanya Premvardhan, St ́ephane Bac, Frederic Jamme, Valerie Rouam, Bruno Lagarde, Fran ̧cois Po- lack, Jean Luc Giorgetta, Jean Paul Ricaud, Michel Bordessoule, and Alexan- dre Giuliani. DISCO synchrotron-radiation circular-dichroism endstation at SOLEIL. Journal of Synchrotron Radiation, 19(Pt 5):831–835, September 2012.
    [26] AndrewJ.MilesandB.A.Wallace.SynchrotronRadiationCircularDichroism Spectroscopy: Applications in the Biosciences. In Bonnie Ann Wallace and Robert William Janes, editors, Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy, pages 141–149. IOS Press, 2009.
    [27] Ulf Nobbmann and Terese Bergfors. Dynamic Light Scattering. In Terese M. Bergfors, editor, Protein Crystallization, chapter 12, pages 221–245. Interna- tional University line, 2 edition, 2009.
    [28] An Introduction to DLS Microrheology, Malvern Instruments, 2012.
    [29] Christopher D Putnam, Michal Hammel, Greg L Hura, and John A Tainer. X-ray solution scattering (SAXS) combined with crystallography and com- putation: defining accurate macromolecular structures, conformations and assemblies in solution. Quarterly Reviews of Biophysics, 40(3):191–285, Au- gust 2007.
    [30] Clement E. Blanchet and Dmitri I. Svergun. Small-angle X-ray scattering on biological macromolecules and nanocomposites in solution. Annual Review of Physical Chemistry, 64, May 2013.
    [31] L. A. Feigin and D. I. Svergun. General Principles of Small-Angle Diffraction. In George W. Taylor, editor, Structure Analysis by Small-Angel X-Ray and Neutron Scattering, pages 38–40. Plenum Press, 1987.
    [32] Wen-Ni Chang, Jen-Ning Tsai, Bing-Hung Chen, and Tzu-Fun Fu. Cloning, expression, purification, and characterization of zebrafish cytosolic serine hy- droxymethyltransferase. Protein Expression and Purification, 46(2):212–220, April 2006.
    [33] Robert W. Woody. Theory of circular Dichroism of Proteins. In Ger- ald D. Fasman, editor, Circular Dichroism and the Conformational Analysis of Biomolecules, pages 26–28. Plenum Press, 1996.
    [34] Norma J Greenfield. Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6):2876–2890, January 2006.
    [35] Szu Heng Liu, Yi Hung Lin, Liang Jen Huang, Shiang Wen Luo, Wan Lin Tsai, Su Yu Chiang, and Hok Sum Fung. Design and construction of a com- pact end-station at NSRRC for circular-dichroism spectra ina the vacuum- ultraviolet region. Journal of Synchrotron Radiation, 17(6):761–768, Novem- ber 2010.
    [36] S T Yang, J L Marchio, and J W Yen. A dynamic light scattering study of beta-galactosidase: environmental effects on protein conformation and en- zyme activity. Biotechnology Progress, 10(5):525–531, 1994.
    [37] A Ortega, D Amoro ́s, and J Garc ́ıa de la Torre. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophysical Journal, 101(4):892–898, August 2011.
    [38] A Ortega and J Garc ́ıa de la Torre. Equivalent radii and ratios of radii from solution properties as indicators of macromolecular conformation, shape, and flexibility. Biomacromolecules, 8(8):2464–2475, August 2007.
    [39] L. A. Feigin and D. I. Svergun. Determination of the Integral Parameters of Particles. In George W. Taylor, editor, Structure Analysis by Small-Angel X-Ray and Neutron Scattering, pages 59–105. Plenum Press, 1987.
    [40] Maxim V Petoukhov, Dmitri I Svergun, Peter V Konarev, Sergio Ravasio, Robert H H van den Heuvel, Bruno Curti, and Maria A Vanoni. Quaternary structure of Azospirillum brasilense NADPH-dependent glutamate synthase in solution as revealed by synchrotron radiation x-ray scattering. The Journal of Biological Chemistry, 278(32):29933–29939, August 2003.
    [41] Maxim V. Petoukhov, Daniel Franke, Alexander V. Shkumatov, Giancarlo Tria, Alexey G. Kikhney, Michal Gajda, Christian Gorba, Haydyn D. T. Mertens, Petr V. Konarev, and Dmitri I. Svergun. New developments in the ATSAS program package for small-angle scattering data analysis. Journal of Applied Crystallography, 45(2):342–350, March 2012.
    [42] D. I. Svergun. Determination of the regularization parameter in indirect- transform methods using perceptual criteria. Journal of Applied Crystallog- raphy, 25(4):495–503, August 1992.
    [43] Petr V. Konarev, Vladimir V. Volkov, Anna V. Sokolova, Michel H. J. Koch, and Dmitri I. Svergun. PRIMUS : a Windows PC-based system for small-angle scattering data analysis. Journal of Applied Crystallography, 36(5):1277–1282, September 2003.
    [44] D I Svergun. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophysical Journal, 76(6):2879–2886, June 1999.
    [45] Vladimir V. Volkov and Dmitri I. Svergun. Uniqueness of ab initio shape determination in small-angle scattering. Journal of Applied Crystallography, 36(3):860–864, April 2003.
    [46] M. B. Kozin and D. I. Svergun. Automated matching of high- and low- resolution structural models. Journal of Applied Crystallography, 34(1):33–41, February 2001.
    [47] Din Goa Liu, Chien Hung Chang, Chin Yen Liu, Shih Hung Chang, Jwei Ming Juang, Yen Fang Song, Kuan Li Yu, Kuei Fen Liao, Ching Shiang Hwang, Hok Sum Fung, Ping Chung Tseng, Chi Yi Huang, Liang Jen Huang, Shih Chun Chung, Mau Tsu Tang, King Long Tsang, Yu Shan Huang, Chien Kuang Kuan, Yi Chih Liu, Keng S Liang, and U Ser Jeng. A ded- icated small-angle X-ray scattering beamline with a superconducting wiggler source at the NSRRC. Journal of Synchrotron Radiation, 16(Pt 1):97–104, January 2009.
    [48] Chiu-Shuen Lin. Folding of recombinant Cyclic-dependent kinase inhibitor p21Waf1/Cip1. Master thesis, National Dong Hwa University, 2005.
    [49] N Sreerama, S Y Venyaminov, and R W Woody. Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Science : a Publication of the Protein Society, 8(2):370– 380, February 1999.
    [50] Terese Bergfors. Handling the Protein Sample. In Terese Bergfors, editor, Protein Crystallization, pages 269–292. International University Line, 2009.
    [51] Hiromi Yoshida, Charles M H Hensgens, Jan Metske van der Laan, John D Sutherland, Darren J Hart, and Bauke W Dijkstra. An approach to pre- vent aggregation during the purification and crystallization of wild type acyl coenzyme A: isopenicillin N acyltransferase from Penicillium chrysogenum. Protein Expression and Purification, 41(1):61–67, May 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE