簡易檢索 / 詳目顯示

研究生: 蔡文元
Wen-Yuan Tsai
論文名稱: 在時間序列中利用Cross Validation選取選模準則
指導教授: 徐南蓉
Nan-Jung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 33
中文關鍵詞: 時間序列Cross Validation選取選模準則
外文關鍵詞: Cross Validation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文主要在探討在時間序列中利用提出的Cross Validation (CV)方法選取選模準則,期望此方法能對於不同的資料選取到適用的選模準則,得到較佳的模型配適以及預測。模擬結果為當真實模型為AR無窮維度時,我們所提出的CV方法較為適用,但若真實模型為有限秩( finte order )時,則不適用。其中當真實模型之相關性較弱的時候,利用CVR(d)方法來當作選模準則較為恰當。在實例分析上,舉了兩個實例,實例一為台灣的出口物價指數,實例二為台灣台北、日月潭、恆春以及澎湖四地區之溫度變化觀察其結果。


    第一章 研究動機與文獻回顧 1 第二章 ARMA模型及參數估計 3 2.1 ARMA及其自相關函數 3 2.2 參數估計 4 2.3 最佳一步線性預測 4 第三章 模式選取準則 6 3.1 秩的選取準則 6 3.1.1 AIC準則 6 3.1.2 BIC準則 7 3.2 選模準則的選取方法 8 第四章 模擬分析 11 4.1 模擬研究設計 11 4.2 模擬數值結果 11 第五章 實例分析 25 5.1 台灣出口物價指數 25 5.2 台灣地區之溫度變化 26 第六章 結論 31 參考文獻 32

    Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. 2nd International Symposium on Information Theory, 267-281.
    Akaike, H. (1969). Fitting autoregressive models for prediction, Annals of the Institute of Statistical Mathematics, 21, 243-247.
    Allen, D.M. (1974). The relationship between variable selection and data augmentation and a method for prediction, Technometrics, 1, 125-127.
    Allen, D.R.McQuarrie and Chih-Ling Tsai. (1999). Regression and time series model selection. World Scientific.
    Bhansali, R. J .and Downham, D. Y. (1977). Some properties of the order of an autoregressive model selected by a generalization of Akaikes EPF criterion. Biometrika ,64, 547-551.
    Efron, B. (1983). Estimating the error rate of a prediction rule: some improvements on cross-validation. Journal of the American Statistical Association, 78, 316-331.
    Efron, B. (1986). How biased is the apparent error rate of a prediction rule? Journal of the American Statistical Association, 81, 461-470.
    Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the American Statistical Association, 70, 320-328.
    Geweke, J. and Meese, R. (1981). Estimating regression models of finite but unknown order, International Economic Review, 22, 55-70.
    Hannan, E. J. and Quinn, B. (1979). The determination of the order of an autoregression, Journal of the Royal Statistical Society, Series B , 41, 190-191.
    Hurvich, C.M. and Tsai, C. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297-307.
    Li, K. C. (1987). Asymptotic optimality for Cp; CL; cross-validation and generalized cross-validation: discrete index set. The Annals of Statistics, 15, 958-975.
    Mallows, C.L. (1973). Some comments on Cp. Technometrics, 15, 661-675.
    Nishii, R. (1984). Asymptotic properties of criteria for selection of variables in multiple regression. The Annals of Statistics, 12, 758-765.
    Picard, R.R. and Cook, R.D. (1984). Cross-validation of regression models. Journal of the American Statistical Association, 79, 575-583.
    Schwartz, G.. (1978). Estimating the dimension of a model. Annals of Statistics. 6, 461-464.
    Shibata, R. (1976). Selection of the order of an autoregressive model by Akaike’s information criterion. Biometrika, 71, 117-126.
    Shibata, R. (1981). An optimal selection of regression variables. Biometrika, 68, 45- 54.
    Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, Series B , 36, 111-147.
    Wahba, G. and Wold, S. (1975). A completely Automatic French curve: fitting spline functions by cross validation, Communications in Statistics, 4, 1-17.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE