簡易檢索 / 詳目顯示

研究生: 莊振榮
Chen-Jung Chuang
論文名稱: 應用於無線區域網路之動態匹配5GHz互補式金氧半射頻前端電路
A 5GHz CMOS RF Front-end with Dynamic Matching for Wireless LAN Application
指導教授: 柏振球
Jenn-Chyou Bor
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 97
中文關鍵詞: 低雜訊放大器混波器多相位濾波器無線區域網路
外文關鍵詞: LNA, Mixer, PPF, WLAN
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個應用於IEEE802.11a無線區域網路的單一互補式金氧半射頻前端晶片。為了實現單一積體化,我們採用Zero-IF的接收機架構以減少晶片外中頻濾波器及中頻電路的使用,同時可以避免影像訊號所造成的干擾。射頻前端電路包含三個部分:差動輸入低雜訊放大器、主動式轉換頻率混波器及多相位濾波器,此外,內建偏壓電路和數位控制電路。數位電路控制低雜訊放大器工作頻帶的切換,以達到寬頻的應用,且補償製程偏移,提高晶片的良率,在I / Q 路徑上使用可提供增益及所需較小本地震盪信號振幅的雙端平衡主動Gilbert混波器,最後使用多相位濾波器來產生I / Q 路徑上所需要的九十度相位差訊號。
    整個射頻前端電路為寬頻設計並有數位控制機制,量測結果顯示整體雜訊指數為 9dB,輸入端反射係數小於-10dB涵蓋5.25 ~ 5.85 GHz頻帶,且整體系統的增益為22.9dB,P1dB為-27.5dBm,IIP3為-12.5dBm。本射頻前端電路是使用聯電0.18微米單多晶層六金屬層之互補式金氧半場效電晶體製程來設計,並操作在工作電壓為1.8伏特下,功率消耗為19.67毫瓦(緩衝器消耗為33.3毫瓦),面積為0.980 * 1.396 mm2。


    The thesis proposes the design and implementation of a single-chip CMOS RF front-end circuit for IEEE802.11a WLAN application. For SOC implementation, the use of Zero-IF receiver architecture reduces the necessity of off-chip component such as IF filter and IF circuit. At the same time, the interference of the image signal is avoided. The RF front-end circuit is composed of three blocks, differential low noise amplifier (LNA), active down-conversion mixer and poly phase filter. In addition, a constant-gm bias circuit and a digital control circuit are built in. The digital control circuit not only controls the operation band selection of low noise amplifier for wide-band application but compensates the process variation for higher chip yield. The use of double-balance active Gilbert mixer at I/Q path provides higher conversion gain and needs lower local oscillation signal amplitude. Finally, a poly phase filter is used to generate quadrature signal for I/Q path. The whole RF front-end circuit is a wide-band design with digital control mechanism. The overall noise figure is 9dB and S11 is below -10dB within the 5.25 ~ 5.85 GHz band. The conversion gain of the system is 22.9dB, P1dB is
    -27.5dBm and IIP3 is -12.5dBm. The RF front-end circuit is implemented in 0.18um 1P6M CMOS process and operated with 1.8V power supply. In addition, it consumes 19.67mW (buffers consume 33.3mW) and occupies 0.980 * 1.396 mm2 die area including bond pads.

    Contents Chapter1 Introduction………………………………………………………………1 1.1 Motivation …………………………………………………………………………1 1.2 Research Goal ……………………………………………………………………2 1.2.1 Overview Wireless LAN Standards…………………………………………2 1.2.2 Review of Receiver Architectures …………………………………………3 1.2.2.1 Homodyne Receiver……………………………………………………4 1.2.2.2 Low-IF Receiver ………………………………………………………5 1.2.2.3 Super-heterodyne Receiver ……………………………………………6 1.2.3 50 Input Matching ………………………………………………………7 1.3 Thesis Organization………………………………………………………………10 Chapter2 RF Front-end Behavior Simulation……………………………………12 2.1 System Specifications……………………………………………………………12 2.1.1 Noise Figure (NF) …………………………………………………………12 2.1.2 Third Order Harmonic Intercept Point (IP3) ………………………………14 2.1.3 Second Order Harmonic Intercept Point (IP2)………………………………15 2.1.4 1dB Gain Compression Point (P1dB)………………………………………16 2.1.5 Design Specification ………………………………………………………16 2.2 RF Behavior Model Simulation with Verilog A language………………………18 Chapter3 Low Noise Amplifier Analysis…………………………………………20 3.1 Noise Characteristics of MOS Transistor ………………………………………20 3.1.1 Gate Terminal Resistor Noise ………………………………………………21 3.1.2 Thermal Noise………………………………………………………………22 3.1.3 Drain Current Noise…………………………………………………………22 3.1.4 Gate Resistor Noise…………………………………………………………23 3.1.5 Flicker Noise ………………………………………………………………24 3.2 Basic LNA Topologies …………………………………………………………25 3.2.1 Common-gate Architectures…………………………………………………26 3.2.2 Common-source Architectures………………………………………………27 3.2.3 Common-source with Source Inductive Degeneration Architectures………28 3.2.4 Cascode versus Single-MOS Input Stage……………………………………29 3.2.5 Fully-differential versus Single-ended………………………………………31 3.3 LNA with Dynamic Matching Design …………………………………………31 3.3.1 Shared Degenerative Inductor………………………………………………33 3.3.2 Dynamic Input Matching Technique ………………………………………34 3.4 Design Optimization Flow………………………………………………………39 3.5 LNA Design and Simulation Results……………………………………………48 3.6 Summary…………………………………………………………………………60 Chapter4 Down Conversion Mixer ………………………………………………61 4.1 Active Gilbert-cell Mixer ………………………………………………………61 4.1.1 Theoretical analysis…………………………………………………………61 4.1.2 Modified Gilbert-cell Mixer…………………………………………………64 4.2 Simulation Results ………………………………………………………………65 4.3 Quaduture Signal Generation……………………………………………………68 4.3.1 Poly Phase Filter Design……………………………………………………69 4.3.2 Poly Phase Filter Simulation Results ………………………………………71 4.4 Summary…………………………………………………………………………73 Chapter5 Implementation and Measurement Results……………………………74 5.1 RF Front-end Simulation Results ………………………………………………74 5.2 Floor Plan and Layout consideration……………………………………………82 5.3 PCB Design………………………………………………………………………84 5.4 Measurements……………………………………………………………………85 5.4.1 Measurement results…………………………………………………………87 5.4.2 PCB modeling………………………………………………………………93 5.5 Conclusion ………………………………………………………………………96 Chapter6 Conclusion and Future Work …………………………………………97 Bibliography

    BIBLIOGRAPHY

    [1] http://www.tiresias.org/guidelines/wireless.htm

    [2] Rossi, P.; Liscidini, A.; Brandolini, M.; Svelto,
    F, “A variable gain RF front-end, based on a
    Voltage-Voltage feedback LNA, for multistandard
    applications”, IEEE J. Solid-Stage Circuits, vol.
    40, pp. 690-697, Mar. 2005.

    [3] Pozar, “Microwave engineering”, John Wiley, 2005

    [4] IEEE Std 802.11a/D7.0-1999, Part II: Wireless LAN
    Medium Access Control (MAC) and Physical Layer
    (PHY) specifications: High Speed Physical Layer in
    the 5GHz Band

    [5] Zargari, M.; Su, D.K.; Yue, C.P.; Rabii, S.;
    Weber, D.; Kaczynski, B.J.; Mehta, S.S.; Singh,
    K.; Mendis, S.; Wooley, B.A.,” A 5-GHz CMOS
    transceiver for IEEE 802.11a wireless LAN
    systems”, IEEE J. Solid-State Circuit, vol. 37,
    pp. 1688-1694, Dec. 2002

    [6] Jussi Ryynanen, “Low-Noise Amplifiers for
    Integrated Multi-Mode Direct-Conversion
    Receivers”, Helsinki University of Technology,
    Electronic Circuit Design Laboratory.

    [7] R. P. Jindal, “Noise associated with distributed
    resistance of MOSFET gate structures in integrated
    circuits,” IEEE Trans. On Electron Devices, vol.
    ED-31, no. 10, pp.1505-1509, Oct. 1984.

    [8] J. B. Johnson, “Thermal Agitation of Electricity
    in Conductors,” Nature, vol. 119, pp. 50-51, 1927.

    [9] Z. Y. Chang and W. M. C. Sansen, Low-Noise Wide-
    Band Amplifiers in Bipolar and CMOS Technologies.
    Boston: Kluwer Academic Publishers, 1991.

    [10] B. Wang, J. R. Hellums, and Charles G. Sodini,
    “MOSFET Thermal Noise Modeling for Analog
    Integrated Circuits,” IEEE J. Solid-Stage
    Circuits, vol. 29, pp. 833-835, July 1994.

    [11] Shaeffer, D. K. ; Lee, T. H., “A 1.5-V, 1.5-GHz
    CMOS low noise amplifier,” IEEE J. Solid-State
    Circuit, vol. 32, pp. 745-759, May. 1997

    [12] A. van der Ziel, Noise in Solid State Devices and
    Circuits. New York: Wiley, 1986.

    [13] J. B. Johnson, “The schottky effect in low
    frequency circuits,” Physics Review, 26, 1925,
    pp. 71-85.

    [14] Scholten, A.J.; Tiemeijer, L.F.; van Langevelde,
    R.; Havens, R.J.; Zegers-van Duijnhoven, A.T.A.;
    Venezia, V.C.,” Noise modeling for RF CMOS
    circuit simulation,” Electron Devices, IEEE
    Transactions, Volume 50, Issue 3, Mar. 2003 pp.
    618 - 632

    [15] Samavati, H.; Rategh, H.R.; Lee, T.H., “A 5-GHz
    CMOS wireless LAN receiver front end,” IEEE J.
    Solid-State Circuit, vol. 35, pp. 765-772, May.
    2000

    [16] Michael Steyaert, Johan Janssens, “CMOS CELLULAR
    RECEIVER FRONT-ENDS”

    [17] http://ocw.mit.edu/OcwWeb/

    [18] Theerachet Soorapanth and Thomas H. Lee., “RF
    Linearity of Short-Channel MOSFETs,” Center for
    Integrated Systems, Stanford University

    [19] B. Gilbert, “A Precise Four-Quadrant Multiplier
    with Subnanosecond Response,” IEEE J. Solid-State
    Circuits, vol. SC-3, pp. 365-373, Dec. 1968.

    [20] N. G. Einspruch and G. Gildenblat, “VLSI
    electronics microstructure science,” in Advanced
    MOS Device Physics: Ney York: Academic, 1989, vol.
    18.

    [21] Darabi, H.; Abidi, A. A., “Noise in RF-CMOS
    mixer: a simple physical model,” IEEE J. Solid-
    State Circuits, vol. 35, pp. 15-25, Jan. 2000.

    [22] Behbahani, F.; Kishigami, Y.; Leete, J.; Abidi,
    A.A., “CMOS mixers and polyphase filters for
    large image rejection,” IEEE J. Solid-State
    Circuits, vol. 36, pp. 873-887, Jun. 2001.

    [23] J. C. Bor “Experiments of Basic Circuit Theory”
    Lecture Slides

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE