研究生: |
吳日中 |
---|---|
論文名稱: |
類夕陽光之有機發光二極體 Organic Light-Emitting Diode Based Artificial Dusk-Light |
指導教授: | 周卓煇 |
口試委員: |
陳建添
薛景中 吳茂昆 岑尚仁 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 有機發光二極體 、夕陽 、暮色 |
外文關鍵詞: | organic light emitting diode, sunset, dusk |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用高波段有機發光二極體(organic light emitting diode, OLED)成功製備出仿真實夕陽光之人造夕陽光光源;此人造夕陽光,具有如夕陽般迷人的光色之外,亦呈現高度的太陽光光譜相似度(Sunlight spectrum resemblance, SSR)和極高的演色性(Color rendering index, CRI)。
類夕陽之橘黃光元件表現,在亮度1,000 cd/m2下,SSR、CRI分別可達,82%、90;類夕陽之黃白光元件表現為87%、92。元件高相似度的原因為:(1) 使用夕陽光光色互補染料。(2)使用具備電洞調制功能的1,3,5-tris (N-phenyl-benzimidazol-2-yl) benzene (TPBi)置於兩發光層之間,使兩發光層皆能有效放光,進而得到高太陽光光譜相似度與超高演色性。
1. C. W. Tang, S. A. Vanslyke, Organic Electroluminescent Diodes. Applied Physics Letters 51, 913 (Sep 21, 1987).
2. J. Kido, M. Kimura, K. Nagai, Multilayer White Light-Emitting Organic Electroluminescent Device. Science 267, 1332 (Mar 3, 1995).
3. B. W. D'Andrade, S. R. Forrest, White organic light-emitting devices for solid-state lighting. Adv Mater 16, 1585 (Sep 16, 2004).
4. S. R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (Apr 29, 2004).
5. F. So, J. Kido, P. Burrows, Organic light-emitting devices for solid-state lighting. Mrs Bull 33, 663 (Jul, 2008).
6. J.-H. Jou et al., Sunlight-style color-temperature tunable organic light-emitting diode. Applied Physics Letters 95, 013307 (2009).
7. J.-H. Jou et al., Highly efficient color-temperature tunable organic light-emitting diodes. J Mater Chem 22, 8117 (2012).
8. J. Kalinowski, M. Cocchi, D. Virgili, V. Fattori, J. A. G. Williams, Mixing of excimer and exciplex emission: A new way to improve white light emitting organic electrophosphorescent diodes. Adv Mater 19, 4000 (Nov 19, 2007).
9. G. Zhou et al., Duplicating "sunlight" from simple WOLEDs for lighting applications. Chem Commun (Camb), 3574 (Jun 28, 2009).
10. J.-H. Jou et al., High-efficiency, very-high color rendering white organic light-emitting diode with a high triplet interlayer. J Mater Chem 21, 18523 (2011).
11. J.-H. Jou et al., Efficient very-high color rendering index organic light-emitting diode. Organic Electronics 12, 865 (2011).
12. J.-H. Jou et al., High efficiency low color-temperature organic light-emitting diodes with a blend interlayer. J Mater Chem 21, 17850 (2011).
13. J.-H. Jou et al., High-efficiency low color temperature organic light emitting diodes with solution-processed emissive layer. Organic Electronics 13, 899 (2012).
14. J.-H. Jou et al., Organic light-emitting diode-based plausibly physiologically-friendly low color-temperature night light. Organic Electronics 13, 1349 (2012).
15. K. P. Able, M. A. Able, Manipulations of Polarized Skylight Calibrate Magnetic Orientation in a Migratory Bird. J Comp Physiol A 177, 351 (Sep, 1995).
16. K. P. Able, M. A. Able, The flexible migratory orientation system of the Savannah sparrow (Passerculus sandwichensis). J Exp Biol 199, 3 (Jan, 1996).
17. K. P. Able, M. A. Able, Development of sunset orientation in a migratory bird: No calibration by the magnetic field. Anim Behav 53, 363 (Feb, 1997).
18. S. Akesson, J. Backman, Orientation in pied flycatchers: the relative importance of magnetic and visual information at dusk. Anim Behav 57, 819 (Apr, 1999).
19. N. Erne, V. Amrhein, Long-term influence of simulated territorial intrusions on dawn and dusk singing in the Winter Wren: spring versus autumn. Journal of Ornithology 149, 479 (2008).
20. V. Penteriani, M. Delgado Mdel, The dusk chorus from an owl perspective: eagle owls vocalize when their white throat badge contrasts most. PloS one 4, e4960 (2009).
21. T. Kosuge, M. Murai, M. Nishihira, Dusk-Copulation of the Rock-Dwelling Ocypodid, Ilyoplax-Integra (Brachyura). J Ethol 10, 53 (Jun, 1992).
22. E. Kan, H. Kitajima, T. Hidaka, T. Nakashima, T. Sato, Dusk mating flight in the swift moth, Endoclita excrescens (Butler) (Lepidoptera : Hepialidae). Appl Entomol Zool 37, 147 (Feb, 2002).
23. G. C. Brainard, B. A. Richardson, T. S. King, R. J. Reiter, The Influence of Different Light Spectra on the Suppression of Pineal Melatonin Content in the Syrian-Hamster. Brain Res 294, 333 (1984).
24. S. W. Lockley, G. C. Brainard, C. A. Czeisler, High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocr Metab 88, 4502 (Sep, 2003).
25. S. M. Pauley, Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Med Hypotheses 63, 588 (2004).
26. A. Bernanose, M. Comte, P. Vouaux, *Sur Un Nouveau Mode Demission Lumineuse Chez Certains Composes Organiques. J Chim Phys Pcb 50, 64 (1953).
27. M. Pope, P. Magnante, H. P. Kallmann, Electroluminescence in Organic Crystals. J Chem Phys 38, 2042 (1963).
28. W. Helfrich, Schneide.Wg, Recombination Radiation in Anthracene Crystals. Phys Rev Lett 14, 229 (1965).
29. W. Helfrich, Schneide.Wg, Transients of Volume-Controlled Current and of Recombination Radiation in Anthracene. J Chem Phys 44, 2902 (1966).
30. P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Roberts, Electrical-Conduction and Low-Voltage Blue Electro-Luminescence in Vacuum-Deposited Organic Films. Thin Solid Films 94, 171 (1982).
31. C. W. T. S. A. VanSlyke, and L. C. Robert, in US. Patent. (1988).
32. C. W. Tang, S. A. Vanslyke, C. H. Chen, Electroluminescence of Doped Organic Thin-Films. J Appl Phys 65, 3610 (May 1, 1989).
33. C. Adachi, T. Tsutsui, S. Saito, Organic Electroluminescent Device Having a Hole Conductor as an Emitting Layer. Applied Physics Letters 55, 1489 (Oct 9, 1989).
34. C. Adachi, T. Tsutsui, S. Saito, Confinement of Charge-Carriers and Molecular Excitons within 5-Nm-Thick Emitter Layer in Organic Electroluminescent Devices with a Double Heterostructure. Applied Physics Letters 57, 531 (Aug 6, 1990).
35. J. H. Burroughes et al., Light-Emitting-Diodes Based on Conjugated Polymers. Nature 347, 539 (Oct 11, 1990).
36. J. H. B. R. H. Friend, and D. D. C. Bradley, in US. Patent. (1993).
37. G. Gustafsson et al., Flexible Light-Emitting-Diodes Made from Soluble Conducting Polymers. Nature 357, 477 (Jun 11, 1992).
38. J. Kido, M. Kohda, K. Okuyama, K. Nagai, Organic Electroluminescent Devices Based on Molecularly Doped Polymers. Applied Physics Letters 61, 761 (Aug 17, 1992).
39. L. S. Hung, C. W. Tang, M. G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters 70, 152 (Jan 13, 1997).
40. M. A. Baldo et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151 (Sep 10, 1998).
41. C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J Appl Phys 90, 5048 (Nov 15, 2001).
42. J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Applied Physics Letters 73, 729 (Aug 10, 1998).
43. J. Kido, T. Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injecting layer. Applied Physics Letters 73, 2866 (Nov 16, 1998).
44. J. S. Huang et al., Low-voltage organic electroluminescent devices using pin structures. Applied Physics Letters 80, 139 (Jan 7, 2002).
45. L. S. Liao, K. P. Klubek, C. W. Tang, High-efficiency tandem organic light-emitting diodes. Applied Physics Letters 84, 167 (Jan 12, 2004).
46. Y. Shao, Y. Yang, White organic light-emitting diodes prepared by a fused organic solid solution method. Applied Physics Letters 86, (Feb 14, 2005).
47. J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, C. Hu, Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source. Applied Physics Letters 88, (May 8, 2006).
48. Y. Sun, S. R. Forrest, Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nat Photonics 2, 483 (Aug, 2008).
49. S. Reineke et al., White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234 (May 14, 2009).
50. W. D. Gill, Drift Mobilities in Amorphous Charge-Transfer Complexes of Trinitrofluorenone and Poly-N-Vinylcarbazole. J Appl Phys 43, 5033 (1972).
51. U. Wolf, V. I. Arkhipov, H. Bassler, Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation. Phys Rev B 59, 7507 (Mar 15, 1999).
52. Murgatro.Pn, Dimensional Considerations for Space-Charge Conduction in Solids. J Phys D Appl Phys 3, 1488 (1970).
53. Murgatro.Pn, Theory of Space-Charge-Limited Current Enhanced by Frenkel Effect. J Phys D Appl Phys 3, 151 (1970).
54. L. G. Thompson, S. E. Webber, External Heavy Atom Effect on Phosphorescence Spectra of Some Halonaphthalenes. J Phys Chem-Us 76, 221 (1972).
55. 吳柏賢, 國立清華大學 (2009).
56. T. Forster, *Zwischenmolekulare Energiewanderung Und Fluoreszenz. Ann Phys-Berlin 2, 55 (1948).
57. D. L. Dexter, A Theory of Sensitized Luminescence in Solids. J Chem Phys 21, 836 (1953).
58. http://chemwiki.ucdavis.edu/@api/deki/files/5318/=dex1.PNG.
59. D. H. Zhang et al., Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6, 1880 (Sep 13, 2006).
60. C. D. Williams et al., Multiwalled carbon nanotube sheets as transparent electrodes in high brightness organic light-emitting diodes. Applied Physics Letters 93, (Nov 3, 2008).
61. C. C. Wu, C. I. Wu, J. C. Sturm, A. Kahn, Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices. Applied Physics Letters 70, 1348 (Mar 17, 1997).
62. M. G. Mason et al., Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices. J Appl Phys 86, 1688 (Aug 1, 1999).
63. C. Adachi, K. Nagai, N. Tamoto, Molecular Design of Hole Transport Materials for Obtaining High Durability in Organic Electroluminescent Diodes. Applied Physics Letters 66, 2679 (May 15, 1995).
64. S. A. VanSlyke, C. H. Chen, C. W. Tang, Organic electroluminescent devices with improved stability. Applied Physics Letters 69, 2160 (Oct 7, 1996).
65. S. Tokito, K. Noda, Y. Taga, Metal oxides as a hole-injecting layer for an organic electroluminescent device. J Phys D Appl Phys 29, 2750 (Nov 14, 1996).
66. Y. Cao, G. Yu, C. Zhang, R. Menon, A. J. Heeger, Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode. Synthetic Met 87, 171 (Mar 31, 1997).
67. A. Elschner et al., PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synthetic Met 111, 139 (Jun 1, 2000).
68. M. T. Hsieh, C. C. Chang, J. F. Chen, C. H. Chen, Study of hole concentration of 1,4-bis[N-(1-naphthyl)-N-'-phenylamino]-4,4(') diamine doped with tungsten oxide by admittance spectroscopy. Applied Physics Letters 89, (Sep 4, 2006).
69. D. D. Zhang et al., Improved hole injection and transport of organic light-emitting devices with an efficient p-doped hole-injection layer. Applied Physics Letters 95, (Dec 28, 2009).
70. D. S. Leem et al., Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer. Applied Physics Letters 91, (Jul 2, 2007).
71. S. H. Eom et al., Effect of electron injection and transport materials on efficiency of deep-blue phosphorescent organic light-emitting devices. Organic Electronics 10, 686 (Jul, 2009).
72. 陳金鑫、黃孝文, OLED有機電激發光材料與元件. (2005).
73. Y. Shirota, M. Kinoshita, T. Noda, K. Okumoto, T. Ohara, A novel class of emitting amorphous molecular materials as bipolar radical formants: 2-{4-[bis(4-methylphenyl)amino]phenyl}-5-(dimesitylboryl)thiophene and 2-(4-[bis(9,9-dimethylfluorenyl)amino]phenyl}-5-(dimesitylborly) thiophene. J Am Chem Soc 122, 11021 (Nov 8, 2000).
74. Y. Shirota, K. Okumoto, H. Inada, Thermally stable organic light-emitting diodes using new families of hole-transporting amorphous molecular materials. Synthetic Met 111, 387 (Jun 1, 2000).
75. J. Y. Li et al., A high Tg carbazole-based hole-transporting material for organic light-emitting devices. Chem Mater 17, 1208 (Mar 8, 2005).
76. Q. X. Tong et al., High T-g triphenylamine-based starburst hole-transporting material for organic light-emitting devices. Chem Mater 19, 5851 (Nov 27, 2007).
77. C. W. T. J. Shi, C. H. Chen, in US. Patent (1997).
78. S. Naka, H. Okada, H. Onnagawa, T. Tsutsui, High electron mobility in bathophenanthroline. Applied Physics Letters 76, 197 (Jan 10, 2000).
79. B. W. D'Andrade, S. R. Forrest, A. B. Chwang, Operational stability of electrophosphorescent devices containing p and n doped transport layers. Applied Physics Letters 83, 3858 (Nov 10, 2003).
80. H. Sasabe et al., Wide-Energy-Gap Electron-Transport Materials Containing 3,5-Dipyridylphenyl Moieties for an Ultra High Efficiency Blue Organic Light-Emitting Device. Chem Mater 20, 5951 (Oct 14, 2008).
81. S. J. Su, T. Chiba, T. Takeda, J. Kido, Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs. Adv Mater 20, 2125 (Jun 4, 2008).
82. T. Wakimoto et al., Organic EL cells using alkaline metal compounds as electron injection materials. Ieee T Electron Dev 44, 1245 (Aug, 1997).
83. C. Ganzorig, K. Suga, M. Fujihira, Alkali metal acetates as effective electron injection layers for organic electroluminescent devices. Mat Sci Eng B-Solid 85, 140 (Aug 22, 2001).
84. G. E. Jabbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian, Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices. Applied Physics Letters 73, 1185 (Aug, 1998).
85. M. Stossel et al., Electron injection and transport in 8-hydroxyquinoline aluminum. Synthetic Met 111, 19 (Jun 1, 2000).
86. E. I. Haskal, A. Curioni, P. F. Seidler, W. Andreoni, Lithium-aluminum contacts for organic light-emitting devices. Applied Physics Letters 71, 1151 (Sep 1, 1997).
87. http://friend.vnu.edu.tw/userfilev4/37910/Chromaticity-diagram.jpg.
88. S. Naka et al., White organic electroluminescent devices with mixed single layer. Ieice T Electron E80c, 1114 (Aug, 1997).
89. C. H. Chuen, Y. T. Tao, Highly-bright white organic light-emitting diodes based on a single emission layer. Applied Physics Letters 81, 4499 (Dec 9, 2002).
90. C. H. Chuen, Y. T. Tao, F. I. Wu, C. F. Shu, White organic light-emitting diodes based on 2,7-bis(2,2-diphenylvinyl)-9,9 '-spirobifluorene: Improvement in operational lifetime. Applied Physics Letters 85, 4609 (Nov 15, 2004).
91. G. T. Lei, L. D. Wang, Y. Qiu, Blue phosphorescent dye as sensitizer and emitter for white organic light-emitting diodes. Applied Physics Letters 85, 5403 (Nov 29, 2004).
92. J. H. Jou et al., Efficient fluorescent white organic light-emitting diodes with blue-green host of di(4-fluorophenyl)amino-di(styryl)biphenyl. Organic Electronics 8, 29 (Feb, 2007).
93. J. Kido, K. Hongawa, K. Okuyama, K. Nagai, White Light-Emitting Organic Electroluminescent Devices Using the Poly(N-Vinylcarbazole) Emitter Layer Doped with 3 Fluorescent Dyes. Applied Physics Letters 64, 815 (Feb 14, 1994).
94. B. W. D'Andrade, R. J. Holmes, S. R. Forrest, Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer. Adv Mater 16, 624 (Apr 5, 2004).
95. J.-H. Jou et al., Efficient, color-stable fluorescent white organic light-emitting diodes with an effective exciton-confining device architecture. Organic Electronics 7, 8 (2006).
96. J. Jou et al., Efficient fluorescent white organic light-emitting diodes with blue-green host of di(4-fluorophenyl)amino-di(styryl)biphenyl. Organic Electronics 8, 29 (2007).
97. J. H. Jou et al., Nanodot-Enhanced High-Efficiency Pure-White Organic Light-Emitting Diodes with Mixed-Host Structures. Adv Funct Mater 18, 121 (2008).
98. Kido, Organic Electroluminescence Material and Display. (2001), vol. Chap17.
99. Kido, Organic Electroluminescence Material and Display. Chap23, (2001).
100. G. Li, J. Shinar, Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped 4,4 '-bis(2,2 '-diphenylvinyl)-1,1 '-biphenyl. Applied Physics Letters 83, 5359 (Dec 29, 2003).
101. S. Tokito, T. Iijima, T. Tsuzuki, F. Sato, High-efficiency white phosphorescent organic light-emitting devices with greenish-blue and red-emitting layers. Applied Physics Letters 83, 2459 (Sep 22, 2003).
102. G. Cheng et al., White organic light-emitting devices using 2,5,2('),5(')-tetrakis(4(')-biphenylenevinyl)-biphenyl as blue light-emitting layer. Applied Physics Letters 84, 4457 (May 31, 2004).
103. T. H. Liu et al., Highly efficient yellow and white organic electroluminescent devices doped with 2,8-di(t-butyl)-5,11-di[4-(t-butyl)phenyl]-6,12-diphenylnaphthacene. Applied Physics Letters 85, 4304 (Nov 8, 2004).
104. Y.-C. Tsai, J.-H. Jou, Long-lifetime, high-efficiency white organic light-emitting diodes with mixed host composing double emission layers. Applied Physics Letters 89, 243521 (2006).
105. S.-J. Su, E. Gonmori, H. Sasabe, J. Kido, Highly Efficient Organic Blue-and White-Light-Emitting Devices Having a Carrier- and Exciton-Confining Structure for Reduced Efficiency Roll-Off. Adv Mater, NA (2008).
106. R. H. Jordan, A. Dodabalapur, M. Strukelj, T. M. Miller, White organic electroluminescence devices. Applied Physics Letters 68, 1192 (Feb 26, 1996).
107. R. S. Deshpande, V. Bulovic, S. R. Forrest, White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer. Applied Physics Letters 75, 888 (Aug 16, 1999).
108. Y.-S. Huang, J.-H. Jou, W.-K. Weng, J.-M. Liu, High-efficiency white organic light-emitting devices with dual doped structure. Applied Physics Letters 80, 2782 (2002).
109. G. Cheng et al., White organic light-emitting devices using a phosphorescent sensitizer. Applied Physics Letters 82, 4224 (Jun 16, 2003).
110. Y. F. Zhang, G. Cheng, Y. Zhao, J. Y. Hou, S. Y. Liu, White organic light-emitting devices based on 4,4(')-bis(2,2(')-diphenyl vinyl)-1,1(')-biphenyl and phosphorescence sensitized 5,6,11,12-tetraphenylnaphthacene. Applied Physics Letters 86, (Jan 3, 2005).
111. Y. Sun et al., Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440, 908 (Apr 13, 2006).
112. H. Kanno, Y. R. Sun, S. R. Forrest, White organic light-emitting device based on a compound fluorescent-phosphor-sensitized-fluorescent emission layer. Applied Physics Letters 89, (Oct 2, 2006).
113. H. Sasabe et al., High-Efficiency Blue and White Organic Light-Emitting Devices Incorporating a Blue Iridium Carbene Complex. Adv Mater 22, 5003 (Nov, 2010).
114. Y. Wei, C. T. Chen, Doubly ortho-linked cis-4,4'-bis(diarylamino)stilbene/fluorene hybrids as efficient nondoped, sky-blue fluorescent materials for optoelectronic applications. J Am Chem Soc 129, 7478 (Jun 20, 2007).
115. 吳明軒, 國立清華大學 (2009).
116. http://zh.wikipedia.org/wiki/%E8%89%B2%E6%B8%A9.
117. http://upload.wikimedia.org/wikipedia/commons/c/ca/Black-body-in-mireds-reversed.png.
118. http://en.wikipedia.org/wiki/Color_rendering_index.
119. D. Nickerson, Light Sources and Color Rendering. J Opt Soc Am 50, 57 (1960).
120. International Commission on Illumination., Method of measuring and specifying colour rendering properties of light sources. Cie (Commission internationale de l'éclairage, CIE Central Bureau, Austria, 1995), pp. vi, 16 p.
121. http://en.wikipedia.org/wiki/Rayleigh_scattering.
122. L. T. Sharpe, A. Stockman, W. Jagla, H. Jagle, A luminous efficiency function, V*(lambda), for daylight adaptation. Journal of vision 5, 948 (2005).
123. http://images.wikia.com/psychology/images/7/72/CIE_1931_Luminosity.png.
124. A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, Electron transport materials for organic light-emitting diodes. Chem Mater 16, 4556 (Nov 16, 2004).
125. G. Hughes, M. R. Bryce, Electron-transporting materials for organic electroluminescent and electrophosphorescent devices. J Mater Chem 15, 94 (2005).