簡易檢索 / 詳目顯示

研究生: 鍾明志
Ming-Chih Chung
論文名稱: 長距離溫度無感光纖感測器研究
Long-Distance Temperature-Independent Optical Fiber Sensing System
指導教授: 王立康
Li-Karn Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 48
中文關鍵詞: 布拉格光柵長距離光纖感測溫度無感光纖雷射
外文關鍵詞: fiber Bragg grating, remote fiber sensor, temperature independent, fiber laser
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文摘要
    在本篇論文中,我們提出一種溫度無感的長距離多波長光纖光柵感測器。不同於使用半導體光放大器,我們是使用透過摻鉺光纖(EDF)做為雷射的增益介質,在激發源選用60mW的1480nm激發雷射,跟其他使用拉曼放大的長距離光纖感測器比較,激發源的功率使用較低,且一樣可得多點、高訊號雜訊比(SNR)的光纖雷射。
    在溫度無感方面,我們是使用一對波長近似的反射式布拉格光纖光柵(FBG , 波長約~1590nm),其中一根光柵固定於translation stage上,另一根則無;利用兩根光柵的溫度敏感度相同而應變的敏感度不同,藉由觀察兩波長峰值的差異,如此即可得到與溫度無感的應變感測。


    論文摘要 致謝 第一章 論文簡介……………………………………………………………………1 1.1 研究背景……………………………………………………………………1 1.2 研究動機……………………………………………………………………3 1.3 論文架構……………………………………………………………………5 第二章 布拉格光纖光柵原理………………………………………………………6 2.1 光柵(grating)的基本原理……………………………………………6 2.2 光纖光柵的種類……………………………………………………………9 2.3 布拉格光纖光柵的製作方法……………………………………………11 2.4 布拉格光纖光柵的應力效應與溫度效應……………………………13 2.5 光放大器簡介……………………………………………………………18 2.5.1 半導體光放大器(SOA)……………………………………………19 2.5.2 光纖拉曼放大器(FRA)……………………………………………19 2.5.3 摻鉺光纖放大器(EDFA)…………………………………………21 2.5.4 光放大器總結……………………………………………………23 第三章 實驗架構與結果討論………………………………………………………24 3.1 感測光源設計………………………………………………………………24 3.1.1 實驗所使用的光柵特性……………………………………………24 3.1.2 實驗光源之架構……………………………………………………25 3.1.3 實驗光源之結果與最佳化…………………………………………28 3.2 光纖惑測溫度無感設計與結果……………………………………………30 3.2.1 溫度無感設計……………………………………………………30 3.2.2 實測結果(固定應變改變溫度)…………………………………31 3.2.3 實測結果(固定溫度改變應變)…………………………………36 第四章 結論…………………………………………………………………………45 參考文戲……………………………………………………………………………46

    1. Alan D. Kersey, Michael A. Davis, Heather J. Patrick, Michel LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele,“Fiber grating sensors(Invited Paper),”Journal of Lightwave Technology, Vol. 15, NO. 8, (August 1997).
    2. Thomas G. Giallorenzi, Joseph A. Bucaro, Anthony Dandridge, G. H. Sigel, JR., James H. Cole, Scott C. Rashleich, and Richard G. Priest, “Optical fiber sensor technology(Invited Paper),”Journal of Quantum Electronics, Vol. QE-18, No. 4,(April 1982).
    3. 張安華, “光纖通訊與實習,”新文京開發, 民國94年
    4. Wei He, Hongbo Cheng, Jiachun Mei, and Desheng Jiang, “Direct measurement of strain-optics effect,” IEEE, pp. 171-173, (2002)
    5. Grang-Chih Lin, Likam Wang, C. C. Yang, M. C. Shin, and T. J. Chung, “Thermal performance of metal-clad fiber bragg grating sensor,”IEEE Photonics Technology Letters, Vol. 10, No. 3, pp. 406-408, (1998)
    6. Yang Zhao and Farhad Ansari, “Intrinsic single-mode fiber–optic pressure sensor”IEEE Photonics Technology Letters, Vol. 13, No. 11,(2001)
    7. Hao-Jan Sheng, Ming-Yue Fu, Tzu-Chiang Chen, Wen-Fung Lin, and Sheau-Shong Bor, “A lateral pressure sensor using a fiber bragg grating”IEEE Photonics Technology Letters, Vol. 16, No. 4, (2004)
    8. A Ddandride. A. B. Tveten, and T. G. Giallorenzi, “Interferometer current sensorsusing optic fiber,”Electron. Lett., 17, 523-535(1981)
    9. J. lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fiber bragg grating,” Sens. Actuators A, Phys., Vol. 92, No.13, pp. 102-108, (2001)
    10. Peng-Chun Peng, Kai-Ming Feng, Wei-Ren Peng, Hung-Yu Chiou, Ching-Cheng Chang, Sien Chi, “Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA,” Optics Communications 252 (2005) 127-131
    11. Peng-Chun Peng, Hong-Yih Tseng, and Sien Chi, “Long-distance fbg sensor system using a linear-cavity fiber raman laser scheme,”IEEE Photonics Technology Letters, Vol. 2, February 2004.
    12. J. H. Lee, Y. G. Han, Y. M. Chang and S. B. Lee, “Raman amplifier-based long-distance, remote FBG strain sensor with EDF broadband source recycling residual raman pump,”Electronics Letters, Vol. 40, No.18(2004)
    13. Thi Van Anh Tran, Young-Geun Han, Young Jun Lee, Sang Hyuck Kim, and Sang Bae Lee, “Performance enhancement of long-distance simultaneous measurement of strain and temperature based on a fiber raman laser with an etched fbg,”IEEE Photonics Technology Letters, Vol. 17, No. 9, September 2005.
    14. Jaehoon Jung, Hui Nam, and Byoungho Lee, “Fiber bragg grating temperature sensor with controllable high sensitivity,”IEEE 405-406, (1998)
    15. B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber bragg grating,”IEEE Photonics Technology Letters, Vol. 12, pp. 675-677, (2000)
    16. Richard Syms, John Cozen, OPTICAL GUIDED WAVES AND DEVICES, McGraw-Hill, 1992
    17. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,”Appl. Phys. Lett., 62(10), 1035(1993)
    18. Meltz G. and W. W. Morey, “Bragg brating formation and germanosilicate fiber photosensitivity,”Proceedings of SPIE, Vol. 1516, p.185-199, 12/1991
    19. 邱宗炫、黃裕文、夏中和, “光纖光柵應變感測器之溫度與膠合效應之研究,”科儀新知第19卷1期,pp. 21-23,(1997)
    20. Y. Sun, J. L. Zyskind, A. K. Srivastava, “Average inversion level, modeling and physics of erbium-doped fiber amplifiers,”IEEE Journal on Selected Topics in Quantum Electronics, Vol. 4, August 1997.
    21. Hirotaka Ono, Makoto Yamada et.al, “1.58-μm band gain-flattened erbium-doped fiber amplifiers for WDM transmission systems,”Journal of Lightwave Technology, Vol.17, pp. 490-496, No. 3, March 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE