簡易檢索 / 詳目顯示

研究生: 陳曼芸
Chen, Man-Yun
論文名稱: 基於FPGA控制輔助諧振換向極換流器研製
Design and Implementation of FPGA-based Auxiliary Resonance Commutated Pole Inverter
指導教授: 吳財福
Wu, Tsai-Fu
口試委員: 沈志隆
Shen, Chih-Lung
林景源
Lin, Jing-Yuan
曾聖有
Tseng, Sheng-Yu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 109
中文關鍵詞: 軟切換硬切換輔助諧振換向極
外文關鍵詞: soft-switching, hard-switching, auxiliary resonant commutated pole converter
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於任何轉換器架構,硬切換都會導致開關損失進而降低整個系統的效率。尤其當切換頻率越高,開關的損耗就越大,對電路整體效率影響就越大。為了提高效率,軟切換為提升效率的重要議題之一。在硬切換拓樸的怠滯時間內,增加LC諧振電路實現軟切換效應,降低開關損耗。利用輔助開關控制諧振電路,使開關能操作在零電壓切換,消除開關損失,使整體效率提高。儘管增加輔助電路,會導致額外的導通損失。但增加的輔助開關導通損失與消除的主開關導通損失相比,增加的導通損失少之又少。
    本研究旨在研製與分析一部輔助諧振換向極換流器,透過諧振電路,使換流器達到軟切換,進而提升效率,改善損失。在控制法方面,使用分切合整數位控制做為本系統之主要控制法,本控制是透過空間向量(Space Vector)與克希荷夫電壓定律(Kirchhoff’s voltage law),推導出之控制法則。可以省去繁瑣的abc-dq軸轉換計算過程,同時考量到直流鏈電壓、三相電感電流、開關切換頻率、負載電感及負載電阻值,可計算出開關責任比率,進而控制三相功率開關,而達到穩定的三相弦波電流輸出,其中直流鏈電壓與三相電感電流可經由回授電路可得。而電感量會隨著電流大小而有所變化,電感衰退也會納入考慮,且響應速度快與計算時間短的特性。此外,三相解耦合分切合整直接數位控制可將三相交互解耦合,使三相三線系統等效成三組單相獨立控制。
    本研究主要貢獻為:(1)實作一部輔助諧振換向極換流器,透過實測來驗證系統穩定性與確保能夠符合換流器輸出之規範;(2)提出新型電路與控制概念,改善目前因為頻率和功率而面臨的元件選擇問題;(3)通過實驗測試,與傳統換流器對比其優劣。


    For any converter topology, hard switching will cause switching loss and reduce efficiency of the overall system. In particular, as the higher the switching frequency of the circuit operates, the loss of the switch is greater, and the greater impact on the system it causes. In order to improve the efficiency, the soft-switching has become one of the importance. The LC resonant circuit is added on hard-switching circuit to realize the soft switching effect and reduce the switching loss. The efficiency improvement of Auxiliary Resonance Commutated Pole inverter is attributed to the primary switches operated at zero voltage switching (ZVS). Although the auxiliary switches contribute to additional conduction loss, the loss is very little in comparison with that of reduced loss.
    This research designs and implements am Auxiliary Resonance Commutated Pole inverter, which achieves soft switching effect through a resonant circuit to improve the efficiency. Regarding the control method, D-Σ direct digital control considers the variations of ac-side voltage and current, which make ripple-compensation algorithm convenient and simple to apply to this control method, and it can omit the complicated calculation process from abc to dq domain. The control-law characteristics of fast response and short calculation time are extremely suitable for the ripple-current-compensation algorithm. Additionally, the D-Σ direct digital control can be decoupled in a natural frame , which results in equivalent three single-phase controls.
    The major contributions of this research include: (1) implement an Auxiliary Resonance Commutated Pole Inverter, verify system stability and ensure that it can achieve high power quality of the grid-connected inverter; (2) propose a new type of inverter, circuit and control concepts, and improve hardware component selection problems; (3) through the experimental test, compare its advantages and disadvantages with the traditional converter.

    摘要................................................................i Abstract..........................................................vii 誌謝..............................................................viii 目錄................................................................ix 圖目錄.............................................................xii 表目錄............................................................xvii 第一章 緒論..........................................................1 1-1 研究背景與動機...................................................1 1-2 諧振電路回顧.....................................................2 1-2-1 硬切換與軟切換特性..............................................2 1-3 軟切換拓樸架構分析................................................3 1-3-1 直流鏈諧振型軟切換拓樸..........................................4 1-3-2 諧振極型軟切換拓樸..............................................6 1-3-3 拓譜架構比較...................................................6 1-4 論文大綱........................................................8 第二章 系統架構與控制策略.............................................9 2-1 輔助諧振換向極換流器架構..........................................9 2-2 三相解耦合直接數位控制...........................................11 第三章 操作原理.....................................................17 3-1 介紹...........................................................17 3-2 基本原理.......................................................18 3-2-1 Case1 ith>iload>0且開關從S1導通到S2導通.......................19 3-2-2 Case2 iload>ith>0且開關從S1導通到S2導通.......................23 3-2-3 Case3 iload>0且開關從S2導通到S1導通...........................26 3-2-4 Case4 iload<0開關從S1導通到S2導通.............................31 3-2-5 Case5 -ith<iload<0且開關從S_2導通到S_1導通....................35 3-2-6 Case6 i_load<-i_th<0且開關從S_2導通到S_1導通..................37 第四章 周邊電路....................................................40 4-1 輔助電源......................................................40 4-2 開關驅動電路...................................................42 4-2-1 開關驅動電源.................................................42 4-2-2 開關驅動電路.................................................43 4-3 電壓/電流回授.................................................44 4-3-1 直流鏈電壓..................................................44 4-3-2 負載電流....................................................45 第五章 系統韌體架構與控制流程.......................................48 5-1 韌體架構......................................................48 5-2 處理器簡介....................................................49 5-3 電路控制規劃..................................................53 5-3-1 主程式規劃..................................................53 第六章 實務考量與損耗分析..........................................58 6-1 元件參數設計與實務考量.........................................58 6-1-1 負載電路....................................................59 6-1-2 諧振電路....................................................60 6-2 實務考量......................................................65 6-2-1 諧振電感量變化..............................................65 6-2-2 延遲時間....................................................70 6-3 損耗分析......................................................75 6-3-1 負載電感損耗................................................75 6-3-2 功率開關損耗................................................78 6-3-3 總損耗.....................................................86 第七章 模擬與實測結果..............................................87 7-1 系統規格.....................................................87 7-2 模擬與實際硬體................................................88 7-2-1 Matlab/Simulink模擬........................................88 7-2-2 實際硬體....................................................89 7-3 模擬與實測波形................................................90 7-3-1 開關切換時序與電流分析.......................................90 7-3-2 軟切換分析..................................................94 7-3-3 效率.......................................................99 第八章 結論與未來研究方向.........................................105 8-1 結論........................................................105 8-2 未來研究方向.................................................106 參考文獻........................................................107

    [1] International Energy Agency, “Global EV Outlook 2022,” France, Paris: IEA Publications, 2022. [Online]
    [2] 周飛,IZCT/ARCP ZVT 軟開關變流器的研究,北京交通大學,博士學位論文,2014年11月
    [3] M. H. Rashid Ph.D., “Power Electronics Handbook,” Butterworth-Heinemann publications, 2011.
    [4] S. karys*, “Advanced control design methods of the auxiliary resonant commutated pole inverter,” BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 63, No. 2, 2015.
    [5] Yoon-Seok Lee, Jae-Hyuk Kim, Byung-Moon Han and Jun-Young Lee, “Auxiliary Resonant Commutated pole Inverter with Clamping Diodes for Voltage Stress Reduction across Auxiliary Switches,” Proceedings of TENCON 2018-2018 IEEE Region 10 Conference, (Jeju , Korea, 28-31 October 2018).
    [6] Mean Well, “RS-25 series,”, September 2022.
    [7] Mean Well, “RS-35 series,”, December 2022.
    [8] XILINX, “7 Series FPGAs Clocking Resource User Guide,”, July 2018.
    [9] DIGILENT, “Cmod A7 Reference Manual,”, June 2016.
    [10] JD Auspice Corporation, “ AWG尺寸對照表”
    [11] Chang Sung Corporation, “TECHNICAL DATA High Flux Titanium 60μ DCB, Core Loss Graph,”, 2019.
    [12] Chang Sung Corporation, “CH740060GT,”, 2020.
    [13] T.-F. Wu, Y.-H. Huang, Y.-T. Liu, and M. Misra, “Decoupled Direct Digital Control with D-Σ Process and Average Common-Mode Voltage Model for 3Φ3W LCL Converters,” 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1-6, March 2019.
    [14] T.-F. Wu, Y. T. Liu, H. Y. Wu, and K. C. Lin, “coupled Current Tracking Capability and Stability Analyses of 3Φ3W LCL Converter With Decoupled Control and Variable Filter Inductances,” IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS Vol. 9, NO. 4, August 2021.
    [15] Ke Ma , Dehong Xu , Tao Zhang and Seiki Igarashi, “The Evaluation of Control Strategies for Auxiliary Resonant Commutated Pole Inverter,” 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, 2009.
    [16] R. W. De Doncker and J.P. Lyons, “The Auxiliary Resonant Commutated Pole Inverter,” Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting, Seattle, WA, USA, 1990.
    [17] R. W. De Doncker and J.P. Lyons, “The Auxiliary Quasi-Resonant DC Link Inverter,” PESC '91 Record 22nd Annual IEEE Power Electronics Specialists Conference, Cambridge, MA, USA, 1991.
    [18] P. Korta, L. V. Iyer, and N, C. Kar, “Soft-Switching EV Traction Inverter Exploiting Full potential of Wide Bandgap Devices,” IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 2020.
    [19] W. Dong, J. Y. Choi, Y. Li, H. Yu, J. Lai, D. Boroyevich, and F. C. Lee, “Efficiency Considerations of Load Side Soft-Switching Inverters for Electric Vehicle Applications,” APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition, New Orleans, LA, USA, 2000.
    [20] M. Ohsugi, T. Shimizu, G. Kimura, A. Toba and S. Sano, “The Analyses of ZVS Turn-off Loss and the New Snubber Circuit for the ARCP Inverter,” Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics, Bologna, Italy, 1994.
    [21] Y. -S. Lee, J. -H. Kim, B. -M. Han and J. -Y. Lee, “Auxiliary Resonant Commutated Pole Inverter with Clamping Diodes for Voltage Stress Reduction across Auxiliary Switches,” TENCON 2018 - 2018 IEEE Region 10 Conference, Jeju, Korea (South), 2018.
    [22] G. Tabrizi, F. Schnabel and M. Jung, "Optimized Design Method and Control of an Auxiliary Resonant Commutated Pole Inverter for Two Level Photovoltaic Inverters," PCIM Europe digital days 2021; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Online, 2021
    [23] A. Charalambous and X. Yuan, "A Soft-switched Three-level T-type Inverter with Auxiliary Commutated Poles," 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan, 2018

    QR CODE