研究生: |
楊業行 Yang, Ye-Xing |
---|---|
論文名稱: |
雷射參數、粉末組成及熱處理對雷射積層製造硬質合金微結構與性質之影響 Effects of laser parameters, powder composition and post-heat treatment on microstructure and properties of cemented carbide processed by selective laser melting |
指導教授: |
葉安洲
Yeh, An-Chou |
口試委員: |
郭振明
陳彥儒 蔡哲瑋 曹德綱 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 67 |
中文關鍵詞: | 碳化鎢 、硬質合金 、雷射積層製造 、熱處理 、雷射參數 |
外文關鍵詞: | tungsten carbide, Cemented carbides, Selective laser melting, Heat-treatment, Laser parameters |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硬質合金是一種非常廣泛使用的粉末冶金產品,常使用在需要高磨耗以及硬度的產品上,例如做為金屬切削的刀具材料,然而傳統的粉末冶金製程會面臨一些問題,其製程步驟複雜且耗時,因而近期許多的研究都將此材料應用於雷射熔融積層製造上,而本研究主要是針對雷射參數對於材料巨觀結構(試片緻密度與表面品質),微觀相組成與機械性質的影響,以及在選定好適當的雷射參數後對不同的三種硬質合金粉末經由雷射熔融積層製造後對其微結構與機械性質做分析, 因為雷射熔融積層製造中較高的冷卻速率以及雷射掃描的重複區域造成材料的微結構有相當大的影響,在製程中產生了一些脆性如W2C, M6C與石墨,而這些相的產生會對材料的性質造成一些不好的影響,因此在本研究中透過熱處理、對原始粉末添加碳以及使用其他優化的掃描策略嘗試去改變其微結構,本研究也成功透過這些方法將W2C與石墨的量降低許多,也提升了WC在微結構中的比例。
Cemented carbide is a very widely used powder metallurgy product, often used in products that require high wear resistance and hardness, such as tool materials for metal cutting. However, traditional powder metallurgy processes face some problems, such as complicated and time consuming process steps. Therefore, many recent studies have applied this material on SLM process. This study is mainly discussed the influence of laser parameters on the microscopic structure (sample density and surface quality), phase composition and mechanical properties. Then after selecting the appropriate laser parameters, I try to analyze the microstructure and mechanical property of the cemented carbide with different compositions. Due to the extremely high cooling rate during the SLM process, some brittle phases such as W2C, M6C and graphite are formed. The generation of these phases can have some adverse effects on the properties of the material. Therefore, in this study, through heat treatment, adding carbon to the original powder, and other optimized scanning strategies were used to attempt to change its microstructure. This study successfully reduced the amount of W2C and graphite by these methods, and also increased the proportion of WC in the microstructure.
[1] On the microstructure and properties of an advanced cemented carbide system processed by selective laser melting Journal of Alloys and Compounds, Volume 782, 25 April 2019, Pages 440-450 Chen-Wei Li, Kai-Chun Chang, An-Chou Yeh.
[2] Complexions in WC-Co cemented carbides Acta Materialia, Volume 149, 1 May 2018, Pages 164-178 Xingwei Liu, Xiaoyan Song, Haibin Wang, Xuemei Liu.
[3] Elastic modulus of nanocrystalline cemented carbide Transactions of Nonferrous Metals Society of China, Volume 28, Issue 5, May 2018, Pages 966-973 Xue-mei LIU, Hai-bin WANG, Xiao-yan SONG, Riccardo MOSCATELLI.
[4] Reactive and liquid-phase sintering techniques Intermetallic Matrix Composites, 2018, Pages 303-318 R. K. Gupta, V. Anil Kumar, G. P. Khanra
[5] Effect of sintering techniques on the microstructure of liquid-phase-sintered SiC ceramics Journal of the European Ceramic Society, Volume 36, Issue 8, July 2016, Pages 1863-1871 Hanqin Liang, Xiumin Yao, Zhengren Huang, Yuping Zeng, Bizhe Su
[6] Liquid phase sintering of mechanically alloyed Mo-Cu powders Materials Science and Engineering: A, Volume 701, 31 July 2017, Pages 237-244 Paola A. Benavides, Benjamín Soto, Rodrigo H. Palma
[7] Liquid Phase Sintering: Ceramics Reference Module in Materials Science and Materials Engineering, 2016 F. T. Mahi, O. -H. Kwon
[8] Additive manufacturing of WC-20Co components by 3D gel-printing International Journal of Refractory Metals and Hard Materials, Volume 70, January 2018, Pages 215-223 Xinyue Zhang, Zhimeng Guo, Cunguang Chen, Weiwei Yang
[9] Selective laser melting of tungsten carbide reinforced maraging steel composite Additive Manufacturing, Volume 22, August 2018, Pages 104-110 Nan Kang, Wenyou Ma, Lorène Heraud, Mohamed El Mansori
[10] Cracks of alumina ceramics by selective laser melting Ceramics International, Volume 45, Issue 1, January 2019, Pages 175-184 Y. Zheng, K. Zhang, T. T. Liu, W. H. Liao
[11] José García, Verónica Collado Ciprés, Andreas Blomqvist, Bartek Kaplan, Cemented carbide microstructures: a review, International Journal of Refractory Metals & Hard Materials 80 (2019) 40–68.
[12] A Discussion on Material Removal Mechanisms in Grinding of Cemented Carbides, J. Manuf. Sci. Eng 139(12), 121002 (Nov 02, 2017)
[13] José Garcia, Wolfgang Strelsky , Process development and scale up of cemented carbide production, · January 2010
[14] Randall M. German Æ Pavan Suri Æ Seong Jin Park, Review: liquid phase sintering. springer, 2009, J Mater Sci, Vol. 44.
[15] Future Communication Technology: A Comparison Between Claytronics And 3-D Printing Vijay Laxmi Kalyani, Divya Bansal
[16] Enneti, R. K., Morgan, R., & Atre, S. V. (2018). Effect of process parameters on the Selective Laser Melting (SLM) of tungsten. International Journal of Refractory Metals and Hard Materials, 71, 315–319.
[17] Liverani, E., Toschi, S., Ceschini, L., & Fortunato, A. (2017). Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. Journal of Materials Processing Technology, 249, 255–263.
[18] Wang, Z., Xiao, Z., Tse, Y., Huang, C., & Zhang, W. (2019). Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy. Optics & Laser Technology, 112, 159–167. doi:10.1016/j.optlastec.2018.11.014
[19] Eckart Uhlmann, André Bergmanna, Witalij Gridin, Investigation on Additive Manufacturing of tungsten carbide-cobalt by Selective Laser Melting, Procedia CIRP 35 ( 2015 ) 8 – 15
[20]Uhlmann,E.;Bergmann,A.;Gridin,W.:StudiezurVerarbeitungvonWolframkarbid-Kobalt für die additive Fertigung von innenkonturierten Werkzeugen. In: 7. Berliner Runde Neue Konzepte für Werkzeugmaschinen 2012. Begleitband. Berlin: Fraunhofer IPK. 2012, p. 209–227.
[21] Additive Manufacturing of application optimized tungsten carbide precision tools Tobias Schwanekamp and Martin Reuber Institute of Manufacturing and Tooling Technology iWFT, Rheinische Fachhochschule Köln, Cologne, Germany.
[22] Sanjay Kumar, Aleksander Czekanski, (2017) "Optimization of parameters for SLS of WC-Co", Rapid Prototyping Journal, Vol.
[23] Kruth, J.P., Kumar, S. and Van Vaerenbergh, J. (2005a), “Study of laser-sinterability of ferro-based powders”,Rapid Prototyping Journal, Vol. 11 No. 5, pp. 287-292.
[24] Kruth, J.-P., Vandenbroucke, B., Van Vaerenbergh, J., Mercelis, P. (2005b), “Benchmarking of different SLS/SLM processes as rapid manufacturing techniques”, International Conference on Polymers & Molds Innovation (PMI), Ghent, 20-23 April.
[25] Sanjay Kumar, Process chain development for additive manufacturing of cemented carbide, Journal of Manufacturing Processes 34 (2018) 121–130
[26] C.B.WeiX.Y.SongJ.FuX.M.LiuY.GaoH.B.WangS.X.Zhao,Effectof heat-treatment of in-situ synthesized composite powder on properties of sintered cemented carbides, Volume 566, 20 March 2013, Pages 96-101
[27] Wang Q, Li L, Yang G, Zhao X, Ding Z. Influence of heat treatment on the microstructure and performance of high-velocity oxy-fuel sprayed WC–12Co coatings. Surf Coat Technol 2012;206:4000-10.
[28] Li, C. J., Ohmori, A., & Harada, Y. (1996). Formation of an amorphous phase in thermally sprayed WC-Co. Journal of Thermal Spray Technology, 5(1), 69–73
[29] Wang, Q., Chen, Z., Li, L., & Yang, G. (2012). The parameters optimization and abrasion wear mechanism of liquid fuel HVOF sprayed bimodal WC–12Co coating. Surface and Coatings Technology, 206(8-9), 2233–2241.
[30] Yousfi, M. A., Norgren, S., Andrén, H.-O., & Falk, L. K. L. (2018). Chromium segregation at phase boundaries in Cr-doped WC-Co cemented carbides. Materials Characterization, 144, 48–56.
[31] J. Weidow, S. Norgren, H.-O. Andrén, Effect of V, Cr and Mn additions on the
microstructure of WC–Co, Int. J. Refract. Met. Hard Mater. 27 (2009) 817–822.
[32] J. Zackrisson, B. Jansson, G.S. Uphadyaya, H.-O. Andrén, WC-Co based cemented carbides with large Cr3C2additions, Int. J. Refract. Met. Hard Mater. 16 (1998) 417–422.
[33] Khmyrov, R. S., Safronov, V. A., & Gusarov, A. V. (2016). Obtaining Crack-free WC-Co Alloys by Selective Laser Melting. Physics Procedia, 83, 874–881.
[34] Domashenkov, A., Borbély, A., & Smurov, I. (2016). Structural modifications of WC/Co nanophased and conventional powders processed by selective laser melting.Materials and Manufacturing Processes, 32(1), 93–100.
[35] Kamyabi, M., Saleh, K., Sotudeh-Gharebagh, R., & Zarghami, R. (2018). Effects of the number of particles and coordination number on viscous-flow agglomerate sintering. Particuology.
[36] Nafsin, N., Hasan, M. M., Dey, S., & Castro, R. H. R. (2016). Effect of ammonia on the agglomeration of zirconia nanoparticles during synthesis, and sintering by spark plasma sintering. Materials Letters, 183, 143–146.
[37] Powders flowability assessment in granular compaction: What about the consistency of Hausner ratio? Powder Technology, In press, accepted manuscript, Available online 15 May 2019 A. Saker, M. -G. Cares-Pacheco, P. Marchal, V. Falk
[38] Processing of Moringa leaves as natural source of nutrients by optimization of drying and grinding mechanism: ALI et al.Journal of Food Process Engineering 40((Suppl)):e12583 · June 2017
[39] Khmyrov RS, Safronov VA, Gusarov AV. Obtaining crack-free WC-Co alloys by selective laser melting. Phys Proc 2016;83:874–81.
[40] Han, Q., Gu, H., & Setchi, R. (2019). Discrete element simulation of powder layer thickness in laser additive manufacturing. Powder Technology.
[41] Nguyen, Q. B., Luu, D. N., Nai, S. M. L., Zhu, Z., Chen, Z., & Wei, J. (2018). The role of powder layer thickness on the quality of SLM printed parts. Archives of Civil and Mechanical Engineering, 18(3), 948–955.
[42]Sufiiarov, V. S., Popovich, A. A., Borisov, E. V., Polozov, I. A., Masaylo, D. V., & Orlov, A. V. (2017). The Effect of Layer Thickness at Selective Laser Melting. Procedia Engineering, 174, 126–134.
[43] Spierings, A. B., Dawson, K., Uggowitzer, P. J., & Wegener, K. (2018). Influence of SLM scan-speed on microstructure, precipitation of Al 3 Sc particles and mechanical properties in Sc- and Zr-modified Al-Mg alloys. Materials & Design, 140, 134–143. doi:10.1016/j.matdes.2017.11.053
[44] Application of base plate preheating during selective laser melting Procedia CIRP, Volume 74, 2018, Pages 5-11 R. Mertens, S. Dadbakhsh, J. Van Humbeeck, J. -P. Kruth
[45] SLM lattice thermal fields acquired by wide-fieldthermal cameraMatthew McMillana, Martin Learya, ClausEmmelmannb, Milan Brandta,
[46] Transition of W2C to WC during carburization of tungsten metal powder International Journal of Refractory Metals and Hard Materials, Volume 72, April 2018, Pages 141-148
[47] A new method for evaluating powder flowability using constant-volume shear tester, Advanced Powder Technology, Volume 29, Issue 12, December 2018, Pages 3577-3583 Yasuhiro Shimada, Shigenobu Hatano, Shuji Matsusaka
[48] Sunny Zafar, Apurbba Kumar Sharma,Microstructure and wear performance of heat treated WC-12Co microwave clad, Vacuum 131 (2016) 213e222
[49] Vashishtha N, Sapate SG, Bagde P, Rathod AB. Effect of heat treatment on friction and abrasive wear behaviour of WC-12Co and Cr3C2-25NiCr coatings. Tribol Int 2018;118:381–99.
[50] Pierson, Hugh O., Handbook of Chemical Vapor Deposition (CVD): Principles, Technology, and Applications, Published in the United States of America by Noyes publications, 1992.
[51] Kiffer R and Benezovsky F 1971 Hard alloys 392.
[52] A comparative study on single-laser and multi-laser selective laser melting AlSi10Mg: defects, microstructure and mechanical properties Materials Science and Engineering: A, Volume 746, 11 February 2019, Pages 416-423 Changchun Zhang, Haihong Zhu, Zhiheng Hu, Luo Zhang, Xiaoyan Zeng
[53] The effect of multi-beam strategies on selective laser melting of stainless steel 316L Additive Manufacturing, Volume 22, August 2018, Pages 334-342 Thorsten Heeling, Konrad Wegener
[54] Jia, K., Fischer, T. E., & Gallois, B. (1998). Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites. Nanostructured Materials, 10(5), 875–891. doi:10.1016/s0965-9773(98)00123-8
[55] Kříž, A. and D. Bricín (2017). Properties and Testing of Cemented Carbides. Powder Metallurgy-Fundamentals and Case Studies, IntechOpen.
[56] Balak, Z., et al. (2015). "Effect of open porosity on flexural strength and hardness of ZrB2-based composites." Ceramics International 41(7): 8312-8319.