研究生: |
陳建熹 Chen, Chien-Hsi |
---|---|
論文名稱: |
二氧化鉿─二氧化鈦複合薄膜於非揮發性電阻式記憶體之特性研究 Study on the HfO2-TiO2 thin films for Resistance Random Acces Memory applications |
指導教授: |
吳泰伯
Wu, Tai-Bor |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 非揮發性電阻式記憶體 、二氧化鉿 |
外文關鍵詞: | RRAM |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非揮發性電阻式記憶體因具備操作電壓低、操作速度快、耐久性佳、記憶元件面積小、及結構簡單化等優點,在目前的研究中備受矚目。近期以過渡金屬的二元氧化物為材料的這方面研究中,如氧化鋅和二氧化鉿等,已得到相當不錯的成果,然而要實際應用於記憶體的開發上,需要對電阻轉換機制更深入瞭解。
本實驗成功以原子層化學氣相沉積法於TiN/Ti/SiO2/Si基板上鍍製HfO2薄膜,再鍍製Pt上電極形成金屬/電阻層/金屬(MIM)結構的電阻式記憶體元件。進一步針對Pt/HfO2/TiN結構,嘗試於上或下電極介面加入TiO2薄膜,形成HfO2‐TiO2的疊層薄膜結構,在所設計的Type 1 : Pt/HfO2/TiN、Type 2 : Pt/HfO2/TiO2/TiN、Type 3 : Pt/TiO2/HfO2/TiN、Type 4 : Pt/TiO2/HfO2/TiO2/TiN等四種結構中,皆觀察到雙極性電阻轉換效應。利用材料分析、空間電荷限制電流理論分析、電極面積效應分析,並綜合電性量測的結果,嘗試探討TiO2薄膜於不同介面位置對電阻轉換的影響,試圖從中歸納出可能的電阻轉換機制。
[1] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin,
F. Chen, C. H. Lien, and M.-J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” IEDM Tech. Dig., p.297, (2008)
[2] Gerhard Muller, Thomas Happ, Michael Kund, Gill Young Lee, Nicolas Nagel, and Recai Sezi, “Status and Outlook of Emerging Nonvolatile Memory Techologies,” IEEE, (2004)
[3] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生, “先進記憶體簡介,” 國研科技創刊號
[4] 劉志益、曾俊元, “電阻式非揮發記憶體之近期發展”
[5] http://www.pcmag.com/encyclopedia_term/0,2542,t=FeRAM&i=59446,00.asp
[6] 葉林秀、李佳謀、徐明豐、吳德和, “磁阻式隨機存取記憶體技術的發展
— 現在與未來,” 物理雙月刊(廿六卷四期) , (2004)
[7] 余昭倫, “綜觀新世代記憶體 ─ 相變化記憶 (PCRAM),” Digitimes 技術 IT, (2006)
[8] S.Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films,” Appl. Phys. Lett. 76, 2749, (2000)
[9] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett. 85, 4073, (2004)
[10] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett. 77, 139, (2000)
[11] C. Rossel, G. I. Meijer, D. Bre’maud, and D. Widmer, “Electrical current distribution across a metal-insulator-metal structure during bistable switching,” J. Appl. Phys. 90, 2892, (2001)
[12] Liping Ma, Jie Liu, Seungmoon Pyo, and Yang Yang, “Organic bistable light-emitting devices,” Appl. Phys. Lett. 80, 362, (2002)
[13] L. P. Ma, J, Liu and Y. Yang, “Organic electrical bistable devices and rewritable memory cells,” Appl. Phys. Lett. 80, 2997, (2002)
[14] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, and J. T. Moon, “Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses,” IEDM Tech. Dig.,p.587, (2004)
[15] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett. 85, 5655, (2004)
[16] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Appl. Phys. Lett. 92, 022110, (2008)
[17] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, ”Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films,” Appl. Phys. Lett. 91, 012907, (2007)
[18] C. Y. Lin, C. Y. Wu, C. Y. Wu, T. Y. Tseng, and Chenming Hu, “Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode,” J. Appl. Phys. 102, 094101, (2007)
[19] C. Y. Lin, C. Y. Wu, C. Y. Wu, T. C. Lee, F. L. Yang, Chenming Hu, and T. Y. Tseng, “Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices,” IEEE Electron Device lett. vol. 28, no. 5, p.366-368, (2007)
[20] Akihito Sawa, “Resistive switching in transition metal oxides,” materials today, 11, 28, (2008)
[21] Rainer Waser, and Masakazu Aono, “Nanoionics-based resistive switching memories,” Nat. Mater. 6, 833, (2007)
[22] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama and H. Tanaka, “Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide,” Appl. Phys. Lett. 89, 103509, (2006)
[23] K. M. Kim, B. J. Choi, and C. S. Hwang, “Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films,” Appl. Phys. Lett. 90, 242906, (2007)
[24] Krzysztof Szot, Wolfgang Speier, Gustav Bihlmayer, and Rainer Waser, “Switching the electrical resistance of individual dislocations in single- crystalline SrTiO3,” Nat. Mater. 5, 312, (2006)
[25] A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, ” Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface” Appl. Phys. Lett. 83, 957, (2003)
[26] S. Tsui, A. Baikalov, J. Cmaidalka, Y. Y. Sun, Y. Q. Wang, Y. Y. Xue, C. W. Chu, L. Chen, and A. J. Jacobson, “Field-induced resistive switching in metal-oxide interfaces,” Appl. Phys. Lett. 85, 317, (2004)
[27] X. Chen, N. J. Wu, J. Strozier, and A. Ignatiev, “Direct resistance profile for an electrical pulse induced resistance change device,” Appl. Phys. Lett. 87, 233506, (2005)
[28] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokurad, “Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett. 85, 4073, (2004)
[29] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, “Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3 /SrTi0.99Nb0.01O3,” Appl. Phys. Lett. 86, 012107, (2005)
[30] Rickard Fors, Sergey I. Khartsev, and Alexander M. Grishin, “Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition,” Phys. Rev. B, 71, 045305, (2005)
[31] M. J. Rozenberg, I. H. Inoue, and M. J. Sánchez, “Strong electron correlation effects in nonvolatile electronic memory devices,” Appl. Phys. Lett. 88, 033510, (2006)
[32] Hyunjun Sim, Hyejung Choi, Dongsoo Lee, Man Chang, Dooho Choi, Yunik Son, Eun-Hong Lee, Wonjoo Kim, Yoondong Park, In-Kyeong Yoo, and Hyunsang Hwang, “Excellent Resistance Switching Characteristics of Pt/SrTiO3 Schottky Junction for Multi-bit Nonvolatile Memory Application,” IEDM Tech. Dig., p.758, (2005)
[33] 王琮鴻, “金屬/ 氧化鋯/ 半導體電容器與場效電晶體之製作與電性分析,” 清華大學碩士論文, (2004)
[34] T. Hori, Gate dielectrics and MOS ULSIs:principle, technologies, and applications, Springer, Berlin, p.8, 45, (1997)
[35] F. C. Chiu, “Electrical characterization and current transportation in metal/Dy2O3/Si structure,” J. Appl. Phys. 102, 044116, (2007)
[36] Nuo Xu, Lifeng Liu, Xiao Sun, Xiaoyan Liu, Dedong Han, Yi Wang, Ruqi Han, Jinfeng Kang, and Bin Yu, “Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories,” Appl. Phys. Lett. 92, 232112, (2008)
[37] P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, “Luminescence mechanism of ZnO thin film investigated by XPS measurement,” Appl. Phys. A 90, p.317, (2008)