研究生: |
黃惟晟 Huang, Wei-Cheng |
---|---|
論文名稱: |
多重zeta值洗牌關係之 t-動機詮釋 A t-motivic interpretation of shuffle relations for multizeta values |
指導教授: |
張介玉
Chang, Chieh-Yu |
口試委員: |
Brownawell, W. Dale
Brownawell, W. Dale 王姿月 Wang, Tzu-Yueh 于靖 Yu, Jing |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 26 |
中文關鍵詞: | 多重 zeta 值 、洗牌關係 、t-模 |
外文關鍵詞: | multizeta values, shuffle relations, t-modules |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Thakur [Tha10] 證明:予兩正整數 $r$ 和 $s$ ,兩個 Carlitz zeta 值 $\zeta_A(r)$ 和 $\zeta_A(s)$ 的乘積可以表示成 $\zeta_A(r+s)$ 和所有權重為 $r+s$ 雙重 zeta 值以係數 $\mathbb{F}_p$ 的線性組合。 Thakur 稱這種表示法為洗牌關係。予兩正整數 $r$ 和 $s$ ,我們建構一個 $\mathbb{F}_q[t]$-模 $X$。予一係數 $\mathbb{F}_q(\theta)$ 的 $n$ 元組,我們亦在模 $X$ 中建構一個點 $v$ 對應於此 $n$ 元組。為了有效的地判別給定 $n$ 元組是否滿足洗牌關係,我們將它連結到點 $v$ 的 $\mathbb{F}_q[t]$-扭性質。我們亦提供一套對於點 $v$ 的 $\mathbb{F}_q[t]$-扭性質有效的判別法。
Thakur [Tha10] showed that, for $r,$ $s\in \mathbb{N}$, a product of two Carlitz zeta values $\zeta_A(r)$ and $\zeta_A(s)$ can be expressed as an $\mathbb{F}_p$-linear combination of $\zeta_A(r+s)$ and double zeta values of weight $r+s$. Such an expression is called shuffle relation by Thakur. Fixing $r,$ $s\in \mathbb{N}$, we construct an $\mathbb{F}_q[t]$-module $X$. To determine effectively whether an $n$-tuple of coefficients in $\mathbb{F}_q(\theta)$ satisfies a shuffle relation, we relate it to the $\mathbb{F}_q[t]$-torsion property of the point $v\in X$ constructed with respect to the given coefficients. We also provide an effective criterion for the $\mathbb{F}_q[t]$-torsion property of the point $v$.
[ABP04] G. W. Anderson, W. D. Brownawell, and M. A. Papanikolas. Determination of the algebraic relations among special $\Gamma$-values in positive characteristic. Ann. of Math. (2), 160(1):237–313, 2004.
[And86] G. W. Anderson. t-motives. Duke Math. J., 53(2):457–502, 1986.
[AT90] G. W. Anderson and D. S. Thakur. Tensor powers of the Carlitz module and zeta values. Ann. of Math. (2), 132(1):159–191, 1990.
[AT09] G. W. Anderson and D. S. Thakur. Multizeta values for Fq[t], their period interpretation, and relations between them. Int. Math. Res. Not. IMRN, (11):2038–2055, 2009.
[Car35] L. Carlitz. On certain functions connected with polynomials in a Galois field. Duke Math. J., 1(2):137–168, 1935.
[Cha14] C.-Y. Chang. Linear independence of monomials of multizeta values in positive characteristic. Compos. Math., 150(11):1789–1808, 2014.
[Cha16] C.-Y. Chang. Linear relations among double zeta values in positive characteristic. Camb. J. Math., 4(3):289–331, 2016.
[Che15] H.-J. Chen. On shuffle of double zeta values over Fq[t]. J. Number Theory, 148:153–163, 2015.
[CPY14] C.-Y. Chang, M. A. Papanikolas, and J. Yu. An effective criterion for Eulerian multizeta values in positive characteristic. to be appear in J. Eur. Math. Soc. (JEMS), ArXiv:1411.0124, 2014.
[Gos96] D. Goss. Basic structures of function field arithmetic, volume 35. Springer-Verlag, Berlin, 1996.
[Pap08] M. A. Papanikolas. Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms. Invent. Math., 171(1): 123–174, 2008.
[Tha04] D. S. Thakur. Function field arithmetic. World Scientific Publishing Co., Inc., River Edge, NJ, 2004.
[Tha09] D. S. Thakur. Power sums with applications to multizeta and zeta zero distribution for Fq[t]. Finite Fields Appl., 15(4):534–552, 2009.
[Tha10] D. S. Thakur. Shuffle relations for function field multizeta values. Int. Math. Res. Not. IMRN, (11):1973–1980, 2010.