簡易檢索 / 詳目顯示

研究生: 黃惟晟
Huang, Wei-Cheng
論文名稱: 多重zeta值洗牌關係之 t-動機詮釋
A t-motivic interpretation of shuffle relations for multizeta values
指導教授: 張介玉
Chang, Chieh-Yu
口試委員: Brownawell, W. Dale
Brownawell, W. Dale
王姿月
Wang, Tzu-Yueh
于靖
Yu, Jing
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 26
中文關鍵詞: 多重 zeta 值洗牌關係t-模
外文關鍵詞: multizeta values, shuffle relations, t-modules
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Thakur [Tha10] 證明:予兩正整數 $r$ 和 $s$ ,兩個 Carlitz zeta 值 $\zeta_A(r)$ 和 $\zeta_A(s)$ 的乘積可以表示成 $\zeta_A(r+s)$ 和所有權重為 $r+s$ 雙重 zeta 值以係數 $\mathbb{F}_p$ 的線性組合。 Thakur 稱這種表示法為洗牌關係。予兩正整數 $r$ 和 $s$ ,我們建構一個 $\mathbb{F}_q[t]$-模 $X$。予一係數 $\mathbb{F}_q(\theta)$ 的 $n$ 元組,我們亦在模 $X$ 中建構一個點 $v$ 對應於此 $n$ 元組。為了有效的地判別給定 $n$ 元組是否滿足洗牌關係,我們將它連結到點 $v$ 的 $\mathbb{F}_q[t]$-扭性質。我們亦提供一套對於點 $v$ 的 $\mathbb{F}_q[t]$-扭性質有效的判別法。


    Thakur [Tha10] showed that, for $r,$ $s\in \mathbb{N}$, a product of two Carlitz zeta values $\zeta_A(r)$ and $\zeta_A(s)$ can be expressed as an $\mathbb{F}_p$-linear combination of $\zeta_A(r+s)$ and double zeta values of weight $r+s$. Such an expression is called shuffle relation by Thakur. Fixing $r,$ $s\in \mathbb{N}$, we construct an $\mathbb{F}_q[t]$-module $X$. To determine effectively whether an $n$-tuple of coefficients in $\mathbb{F}_q(\theta)$ satisfies a shuffle relation, we relate it to the $\mathbb{F}_q[t]$-torsion property of the point $v\in X$ constructed with respect to the given coefficients. We also provide an effective criterion for the $\mathbb{F}_q[t]$-torsion property of the point $v$.

    1 Introduction 1 2 Preliminaries and The Main Theorems 2 2.1 Some notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Frobenius modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 The $\Ext^1$-module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 The Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Proof of the Theorem 2.6 5 3.1 Some important properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 A key lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 The Anderson-Brownawell-Papanikolas Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4 Proof of the Theorem 2.6(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.5 Proof of the Theorem 2.6(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 A necessary condition for the SR-property 14 5 An effective criterion for the $\mathbb{F}_q[t]$-torsion property of $M_\mathfrak{C}$ 14 5.1 Anderson t-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.2 Identification of $\Ext_{\mathscr{F}}^1(\mathbf{1},M')$ and the Anderson t-module E . . . . . . . . . . . . . . . . . . . . 16 5.3 The structure of $\mathbf{C}^{\otimes n}(k)_{\tor}$ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.4 A criterion for the $\mathbb{F}_q[t]$-torsion property of $M_\mathfrak{C}$ in $\Ext_{\mathscr{F}}^1(\mathbf{1},M')$ . . . . 18 6 Algorithm 19 7 Another method 20 Appendix A The proof of the Theorem 5.8 23 A.1 Two crucial properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 References 26

    [ABP04] G. W. Anderson, W. D. Brownawell, and M. A. Papanikolas. Determination of the algebraic relations among special $\Gamma$-values in positive characteristic. Ann. of Math. (2), 160(1):237–313, 2004.
    [And86] G. W. Anderson. t-motives. Duke Math. J., 53(2):457–502, 1986.
    [AT90] G. W. Anderson and D. S. Thakur. Tensor powers of the Carlitz module and zeta values. Ann. of Math. (2), 132(1):159–191, 1990.
    [AT09] G. W. Anderson and D. S. Thakur. Multizeta values for Fq[t], their period interpretation, and relations between them. Int. Math. Res. Not. IMRN, (11):2038–2055, 2009.
    [Car35] L. Carlitz. On certain functions connected with polynomials in a Galois field. Duke Math. J., 1(2):137–168, 1935.
    [Cha14] C.-Y. Chang. Linear independence of monomials of multizeta values in positive characteristic. Compos. Math., 150(11):1789–1808, 2014.
    [Cha16] C.-Y. Chang. Linear relations among double zeta values in positive characteristic. Camb. J. Math., 4(3):289–331, 2016.
    [Che15] H.-J. Chen. On shuffle of double zeta values over Fq[t]. J. Number Theory, 148:153–163, 2015.
    [CPY14] C.-Y. Chang, M. A. Papanikolas, and J. Yu. An effective criterion for Eulerian multizeta values in positive characteristic. to be appear in J. Eur. Math. Soc. (JEMS), ArXiv:1411.0124, 2014.
    [Gos96] D. Goss. Basic structures of function field arithmetic, volume 35. Springer-Verlag, Berlin, 1996.
    [Pap08] M. A. Papanikolas. Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms. Invent. Math., 171(1): 123–174, 2008.
    [Tha04] D. S. Thakur. Function field arithmetic. World Scientific Publishing Co., Inc., River Edge, NJ, 2004.
    [Tha09] D. S. Thakur. Power sums with applications to multizeta and zeta zero distribution for Fq[t]. Finite Fields Appl., 15(4):534–552, 2009.
    [Tha10] D. S. Thakur. Shuffle relations for function field multizeta values. Int. Math. Res. Not. IMRN, (11):1973–1980, 2010.

    QR CODE