簡易檢索 / 詳目顯示

研究生: 羅艷華
Monica Law Chu
論文名稱: An Efficient-Communication Private Matching Scheme in Client-Server Model
在用戶端與伺服器架構底下的效率傳輸私密配對方法
指導教授: 孫宏民
Sun, Hung-Min
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 37
中文關鍵詞: 私人匹配不經意傳輸通用散列函數通信複雜性
外文關鍵詞: Private matching, Oblivious Transfer, Universal hash function, Communication Complexity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, we propose an efficient- communication solution for private matching problem in Client-Server model. We consider the Client-Server environment, the client C has the dataset X of m elements and Server S has the dataset of n elements. However, it has shown to be not efficient, because the client’s dataset is smaller than the server’s dataset, i.e., m << n. Previously, the best result for solving PM problem requires the communication complexity O (m + n), which is linearly increasing with n.
    Our proposed scheme is based on Oblivious Transfer. The communication complexity will only require O (m • log2 n), which is linearly increasing with log2 n. The technology is to construct a small universe, called hashed universe, by applying the universal hash function to the based universe of X and Y. We show that running the PM protocol will output the same result both in the based universe and the hashed universe. Our proposed scheme can perform more efficient when log2 (m +n) = O (n/m), for some security parameter ∆ > 0. We have to point out that our method can control the Error probability of choosing a PM applicable function to be very small. Compared to the previous PM protocol, our method is much more communication-efficient in the Client-Server model.


    本論文的目標在找出一個有效率的傳輸複雜度再私密配對的方法。我們分析過去最好的方法為O(m+n),其中m是伺服器端的資料個數,而n是用戶端的資料個數。然而,這在一般的用戶端與伺服器端的架構底下是很沒有效率的。一般來說,伺服器的資料個數遠遠大於用戶端的資料個數,這會使得私密配對的複雜度隨著n呈線性成長。
    在本論文裡,我們提出一個有效率傳輸的私密配對方法。我們的方法尤其適用在用戶端與伺服器端架構底下。我們利用模糊傳輸協定(OT)的技巧去設計私密配對,並達到了O (m • log2 n)的傳輸複雜度。此外,我們並証明此方法在log2 (m +n) = O ( )會表現的比傳統的方法來的更有效率。我們採用 Universal hash function的技巧,將原本用戶端與伺服器端基於的資料集合X和Y映射到較小的資料集合,且經過由基於模糊傳輸協定的私密配對後,仍會有與原來配對X和Y相同的結果,因此達到具有傳輸效率的私密配對方法。

    Aknowledgement I Abstract (in Chinese). II Abstract (in English). III Contents IV List of Tables. V List of Figures V Chapter 1 Introduction 1 1.1 Introduction to Private matching 1 1.2 Objective of the thesis 3 1.3 Overview of the Thesis 3 Chapter 2 Related Work 4 2.1 AgES Protocol 4 2.2 HL Protocol 5 2.3 FNP Protocol 6 Chapter 3 Preliminaries 8 3.1 Notation 8 3.2 Security Models 8 3.2.1 Semi-honese Adversaries 9 3.2.2 Malicious Adversaries 9 3.2.3 Ideal Model 10 3.2.4 Trusted Third Party 10 3.3 Homomorphic Cryptosystem 11 3.3.1 Additively homomorphic encryption 13 3.3.1.1 Paillier Cryptosystem 13 3.3.2 Multiplicative homomorphic encryption 15 3.3.2.1 ElGamal Cryptosystem 15 3.4 Oblivious Transfer 17 3.5 Introduction to Hash Function 18 Chapter 4 Private matching based on Oblivious Transfer 21 4.1 Introduction to Lipmma method to implement our (m, n)-PM 21 4.2 Implementing (m, n)-PM: A Na□ve Method 22 4.2.1 Na□ve method against Semi-honest Adversaries 23 4.2.2 Na□ve method against Malicious Adversaries 24 4.3 Applying Universal Hash Function : (m, n)-PMUH 24 4.3.1 The Analysis of (m, n)-PM in Hashed Universe 25 4.3.1.1 PM-applicable function 27 4.3.1.2 The Universal hash family 28 4.3.2 Construction of (m, n)-PM ¬UH 30 4.3.3 Communication Complexity of (m, n)-PMUH 31 Chapter 5 Comparisons in Communication Complexity 32 Chapter 6 Conclusions 34 6.1 Summary and Discussions 34 6.2 Future Research 35 References 36 List of Tables Table 1: Comparisons in Communication Complexity of private matching protocol 33 List of Figures Figure 1: The Based Universe and the Hashed Universe 25 Figure 2: Three mapping cases 26

    [1] Andrew Chi-Chih Yao: Protocols for Secure Computations (Extended Abstract) FOCS 1982: 160-164
    [2] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In Proceedings of the nineteenth annual ACM conference on Theory of computing, pages 218-229. ACM Press, 1987
    [3] R. Agrawal, A. Evfimievski, and R. Srikant, Information sharing across private databases, Proceedings of the 2003 ACM SIGMOD international conference on Management of Data, pages, 86-97.
    [4] Michael O. Rabin. "How to exchange secrets by oblivious transfer." Technical Report TR-81, Aiken Computation Laboratory, Harvard University, 1981
    [5] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation (extended abstract). In Proceeding of the 31th ACM Symposium on Theory of Computing. Pages 245-254, Atlanta, GA, USA. May 1-4 1999.
    [6] Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155-175. Springer, Heidelberg (2008).
    [7] Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious psedorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303-324. Springer, Heidelberg (2005).
    [8] M.J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. Advances in Cryptology- Eurocrypt ‘04, volume 3027 of LNCS, pages 1-9. Springer-Verlag Berlin Heidelberg, 2004.
    [9] Kiayias, A., and Mitrofanova, A. Testing disjointness of private datasets. In Financial Cryptography (2005), A. S. Patrick and M. Yung, Eds., vol. 3570 of Lecture Notes in Computer Science, Springer, pp. 109-124.
    [10] Hohenberger, S., and Weis, S.A. Honest-verifier private disjointness testing. In Workshop on Privacy Enhancing Technologies (To appear June 2006), G. Danezis and P. Golle, Eds., Springer.
    [11] Pascal Paillier, “Public Key Cryptosystems Based on Composite Degree Residuosity Class”, EUROCRYPT 1999, pp. 223-238.
    [12] Taher-Gamal, “A Public-Key Cryptosystem and a Signature Based on Discrete Logarithms, IEEE Transactions on Information Theory”, V.IT-31, N.4, 1985.
    [13] O. Baudron, P. Fouque, D. Pointcheval, G. Poupard, and J. Stern. Practical multi-candidate election system. In Proc. of the ACM Symp. On Principles of Distributed Computing , Philadelphia, 2001.
    [14] Moni Naor and Benny Pinkas. "Oblivious transfer with adaptive queries." In Advances in Cryptology: CRYPTO ’99, volume 1666 of LNCS, pages 573–590. Springer, 1999.
    [15] Gilles Brassard, Claude Cr□peau and Jean-Marc Robert. "All-or-nothing disclosure of secrets." In Advances in Cryptology: CRYPTO ’86, volume 263 of LNCS, pages 234–238. Springer, 1986.
    [16] H. Lipmma, An Oblivious Transfer Protocol with Log-Squared Communication, Information Security, volume 5222 of LNCS, pages 441-454, Springer-Verlag, 2008.
    [17] M.Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press Cambridge, 2005.
    [18] D. Dachman-Soled, T. Malkin, M. Raykova and M. Yung, Efficient Robust Private Set Intersection, Applied Cryptography and Network Security, volume 5536 of LNCS, pages 125-142, Springer-Verlag, 2009.
    [19] O. Goldreich, Secure Multi-party Computation, Working Draft, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE