簡易檢索 / 詳目顯示

研究生: 陳詩婷
Chen, Shih-Ting.
論文名稱: 以弱結構專題訓練工學院學生解決問題能力:以一門工學院課程為例
Developing engineering students’ problem-solving abilities through ill-structured projects ─ a case study on an engineering class
指導教授: 曾正宜
Tzeng, Jeng-Yi
口試委員: 陳素燕
Chen, Su-Yen
廖冠智
Liao, Guan-Ze
學位類別: 碩士
Master
系所名稱: 清華學院 - 學習科學研究所
Institute of Learning Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 85
中文關鍵詞: 專題導向學習弱結構問題跨領域
外文關鍵詞: project -based learning, ill-structured problems, interdisciplinary
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是在探討,當工學院同學參與以專題本位的課程設計時,對於解決開放性弱結構問題的策略與感想,以及同學在教師的引導下,又對於解決開放性弱結構問題有怎樣的影響。
    研究方法以觀察與訪談為主,研究者選擇化工系大四的一門專題課程並且進行為期兩學期的課堂觀察與紀錄。除了記錄課中的師生互動及課後小組討論,並且在學期末分別對同學與授課教師進行半結構訪談,以蒐集資料。在此專題課程中,同學在選擇教師所提供的前瞻性題目後,設計與規劃化程序計畫書,並且於期末報告成果。由於題目與程序計畫書具有前瞻性與跨域性,使得同學面臨的問題,會近似化工工程師在產業中所需面對的跨領域開放性弱結構問題。而同學的反應與解決策略則是研究者關注的重點。
    研究分析後發現,即便缺乏先備知識與較少的題目訊息量會提升問題難度,但同學們仍舊有解決開放弱結構問題的基礎能力,而教師的教學引導策略除了協助同學降低問題難度與提升探究與學習動機之外,同學也因此學得解決問題的策略並提升能力。研究結果除了肯定透過教師在專題與教學策略的設計對同學提升能力的幫助之外,也提供其他教師在設計類似課程的參考價值。由於研究限制,未來的研究建議可以往同學如何詮釋問題以及問題詮釋會如何影響問題解決等,作為研究方向。


    The purpose of this research is to discuss the students’ strategy for open-ended ill-structured problem and the result of teacher’s guiding.
    In the research, we selected one class of chemical engineering as a case, and there are 21 students in the final school year. The research period was two semesters. The data included videotaping and audio-recording of the discussion between teacher and students in the class and team discussions after class. We also take interview method with student and teacher, which will help us to collect data about how they feel during the class.
    In the class, students need to design a chemical process design plan. Students can choose one of the topics, which are provided by teacher, to be their topic of the plan book. At the end of semester, students need to report the results of work in final. These ill-structured problems, which students deal with, are similar to the problem engineers deal with in daily life. The reaction of students it the point in the whole research.
    After applying the method of analytic induction, we found that students who don’t have prior knowledge still can solve open-ended ill-structured problems with basic strategy. And teacher’s instructional strategies can help students to solve some problems which are too hard and complicated to them. Meanwhile, students learn some strategies about problem solving from teachers, their capability is prompted through the whole process of problems solving, and their learning motivation are increased.
    The result of study reveals that teacher’s instructional design is positive to improve students’ capability on problem-solving. The value of this research may help other teacher who want to design similar class. In the future, more studies are needed to explore how student interpret open-ended ill-structed problem, and whether the process of problem solving is affected by these interpretations.

    摘要----------------------------------------------------- I 目錄----------------------------------------------------- III 表目錄--------------------------------------------------- V 第一章 研究背景與動機---------------------------------- 1 第二章 文獻探討---------------------------------------- 5 第一節 弱結構問題與問題解決--------------------------- 5 第二節 跨域力------------------------------------------ 6 第三節 專題本位學習法(Problem-Based Learning)------- 8 第三章 研究方法---------------------------------------- 15 第一節 研究對象---------------------------------------- 15 第二節 研究流程的設計與實施--------------------------- 15 第三節 研究方法---------------------------------------- 17 第四節 資料收集與分析---------------------------------- 18 第五節 研究限制---------------------------------------- 20 第四章 研究分析與結果---------------------------------- 21 第一節 三組的背景比較---------------------------------- 21 第二節 教師的教學目的與設計--------------------------- 23 第三節 同學面對問題的反應與策略----------------------- 35 第五章 討論-------------------------------------------- 59 第一節 先備知識與題目性質對解決問題的影響------------ 59 第二節 教學策略對於問題解決的影響--------------------- 60 第三節 同學在能力發展的現象---------------------------- 66 第六章 結論與建議--------------------------------------- 71 第一節 工程領域裡開放性弱結構課程的重要性------------- 71 第二節 跨領域的重要性----------------------------------- 71 第三節 設計課程的重點----------------------------------- 72 第四節 學生的展現---------------------------------------- 73 第五節 課程修改的重點與建議----------------------------- 77 第六節 未來研究方向------------------------------------- 80 參考文獻--------------------------------------------------- 81

    中文文獻
    王驥懋(民104)。跨科際研究:文獻回顧以及研究議題。台北市:教育部。
    王金國(民107)。以專題式學習法培養國民核心素養。臺灣教育評論月刊,7(2),107-111。
    李育諭、林季怡(民107)。大學跨領域能力、課程參與和問題覺知關係之研究。科學教育學刊,26,419- 440。
    林童照、邵長瑛(民99)。對知識累積創新能力的一些思索。通識學刊:理念與實務, 2(1),213 – 228。
    教育部(民102)。教育部人才培育白皮書。台北市:教育部。
    陳毓凱、洪振方(民96)。兩種探究取向教學模式之分析與比較。科學教育月刊,305,4-19。
    黃茂在、陳文典(民93)。「問題解決」的能力。科學教育月刊,273,21-41。
    張春興(民102)。教育心理學。台北市:東華。
    關笑芳(民103)。「問題為本學習」能否培養學生創意?。青年研究學報,7,1。
    英文文獻
    Barry, A., Born, G., & Weszkalnys, G. (2008). Logics of interdisciplinarity. Economy and Society, 37(1), 20-49. 

    Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Motivating project-based learning:Sustaining the doing, supporting the learning. Educational Psychology, 26(3&4), 369-398.
    Brassler, M. , & Dettmers, J. (2017). How to Enhance Interdisciplinary Competence—Interdisciplinary Problem-Based Learning versus Interdisciplinary Project-Based Learning. Interdisciplinary Journal of Problem-Based Learning, 11(2).
    Bybee, R. W., Taylor, J. A., Gardner, A., Scotter, P. V., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins, effectiveness, and applications. Colorado Springs, CO: BSCS. Chinn,
    Churchman, C. W. (1971). The design of inquiring systems: Basic concepts of systems and organization. New York: Basic Books.
    Cropley, A. (2006). In praise of convergent thinking. Creativity Research Journal, 18, 391-404.
    Delisle, R. (1997). How to use problem-based learning in the classroom. Alexandria: Association for Supervision & Curriculum Development (ASCD)
    Dewey, J. (1910). How we think, D.C: Heath
    Dunlosky & Matvey (2001). Journal of experimental psychology learning, memory, and cognition, 27(5), 1180-1191
    Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill Guilford.
    Jacobson, M.J. (1990). Knowledge acquisition, cognitive flexibility, and the instructional applications of hypertext: A comparison of contrasting designs for computer-enhanced learning environments. (Doctoral dissertation, University of Illinois).
    Jonassen, D. H. (1997). Instructional design models for well-structured and ill- structured problem-solving learning outcomes. Educational Technology: Research and Development, 45(1), 65-94.
    Johnson, L.; Adams Becker, S.; Estrada, V.; Freeman, A. (2015). The NMC Horizon Report: Higher Education Edition. New Media Consortium.
    Kellah, M. Edens. (2000). Preparing Problem Solvers for the 21st Century through Problem-Based Learning. College Teaching, 48(2), 55-60.
    Klahr, D. (2000). Exploring science: The cognition and development of discovery processes. Cambridge, MA: The MIT Press.
    Klahr, D., & Carver, S. M. (1995). Scientific thinking about scientific thinking. Monographs of the Society for Research in Child Development, 60(4), 137-151.
    Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1-48.
    Klein, J. T. (2005). Integrative learning and interdisciplinary studies. Peer Review, 7(4), 8-10.
    Kluwe, R. H., & Friedricksen, G. (1985). Mechanisms of control and regulation in problem solving. In J. Kuhl & J. Beckmann (Eds.), Action control: From cognition to behav- ior (pp. 183–218). New York: Springer-Verlag.
    Koslowski, B. (1996). Theory and evidence: The development of scientific reasoning. Cambridge, Massachusetts: The MIT Press.
    Koriat, A. (1993). How do we know that we know? The accessibility model of knowing. Psychological Review, 100, 609-639.
    Koslowski, B., Marasia, J., Chelenza, M., & Dublin, R. (2008). Information becomes evidence when an explanation can incorporate it into a causal framework. Cognitive Development, 23(4), 427-487.
    Krajcik, J. S., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3&4), 313-350.
    Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96(4), 674-689.
    Kuhn, D., & Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development, 1(1), 113-129.
    Lattuca, L. R., Knight, D. B., & Bergom, I. M. (2013). Developing a measure of interdisciplinary competence for engineers. International Journal of Engineering Education, 29(3), 726- 739.
    Lattuca, Lisa. R.; Knight, David; Seifert, Tricia A.; Reason, Robert D.; Liu, Qin. (2017). Examining the Impact of Interdisciplinary Programs on Student Learning. Innovative Higher Education, 42(4), 337-353
    Margot, F., Jo, A. N. (2016). Problem-Based Learning in Teacher Education. Springer International Publishing. New York.
    Moran, J. (2002). Interdisciplinarity. New York: Routledge.
    National Academy of Engineering. (2004). The Engineer of 2020: Visions of Engineering in the New Century. Washington, DC: The National Academies Press.
    National Academy of Engineering. (2017). Engineering Societies and Undergraduate Engineering Education: Proceedings of a Workshop. Washington, DC: The National Academies Press. https://doi.org/10.17226/24878.
    Newell, A. and Simon, H. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice Hall.
    Newman, D., Griffin, P., & Cole, M.(1989).The construction zone: Working for cognitive change in school. Cambridge: Cambridge University Press.
    Polman, J., & Fishman, B. (1995). Electronic communication tools in the classroom: student and environmental characteristics as predictors of adoption. The Annual Meeting of the American Educational Research Association. San Francisco, CA
    Repko, A. F. (2008). Assessing interdisciplinary learning outcomes. Academic Exchange Quarterly, 12(3), 171-178.
    Repko, A. F. , Szostak, R (2017). Interdisciplinary research: process and theory. Los Angeles: Sage.
    Richard E. Mayer. (1992). Thinking, Problem Solving, Cognition. NY: W. H. Freeman.
    Schauble, L. (1990). Belief revision in children: The role of prior knowledge and strategies for generating evidence. Journal of Experimental Child Psychology, 49(1), 31-57.
    Schauble, L., Glaser, R., Raghavan, K., & Reiner, M. (1992). The integration of knowledge and experimentation strategies in understanding a physical system. Applied Cognitive Psychology, 6(4), 321-343.
    Sinnott, J. D. (1989). A model for solution of ill-structured problems: Implications for everyday and abstract problem solving. In J. D. Sinnott (Eds.), Everyday problem solving: Theory and applications. (pp. - )New York: Praeger Publishers.
    Spiro, R. J., Vispoel, W. P., Schmitz, J. G., Samarapungavan, A., & Boerger, A. E. (1987). Knowledge acquisition for application: Cognitive flexibility and transfer in complex content domains. In B. K. Britton & S. M. Glynn (Eds.), Psychology of reading and reading instruction. Executive control processes in reading (pp. 177-199). Hillsdale, NJ: Erlbaum. 

    Thomas, J. W., Mergendoller, J. R., & Michaelson, A. (1999). Project-based Learning: A Handbook for Middle and High School Teachers. Novato, CA: The Buck Institute for Education.
    de Boer, M., Bosch, F. A. J. and Volberda, H. W. (1999). Managing organizational knowledge integration in the emerging multimedia complex, Journal of Management Studies, 36(3), 379-398.
    Voss, J. F. (1988). Problem solving and reasoning in ill-structured domains. In C. Antaki (Ed.), Analyzing everyday explanation: A casebook of methods (pp.74-93). Thousand Oaks, CA, US: Sage Publications, Inc.

    QR CODE