研究生: |
孫源豪 Sun Yuan-Hao |
---|---|
論文名稱: |
薄膜之應力分析及奈米壓痕性質之研究 The Stress Analysis and Nanoindentation Properties of Film / Substrate System |
指導教授: |
李三保
Sanboh Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | 薄膜應力 、奈米壓痕 、非晶矽 、非晶鍺 |
外文關鍵詞: | film stress, nanoindentation, amorphous silicon, amorphous germanium |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
We use two kinds of specimen, the soft film / hard substrate system (amorphous silicon film deposited on (100) silicon) and the hard film / soft substrate system (amorphous germanium film deposited on PET (polyethylene terephthalate), to analyze the mechanical properties, stress distribution of the films and substrates.
The hardness and Young’s modulus of bulk PET (polyethylene terephthalate) obtained from nanoindenter are 0.3∼0.55GPa and 3.3GPa, respectively. The hardness and Young’s modulus of film/substrate system are fitted by equations provided by Nix [1]. A fitting equation that predict the Young’s modulus when the parameter β and the D/t ratio are given in the a-Ge film/ PET substrate where D is the penetration depth and t is the film thickness. The parameter β to the Young’s modulus is 1.62364. A fitting equation that predict the hardness when the H and indentation depth are given in the a-Ge film/ PET substrate. The parameter H0 and h* to the hardness are 3.95475GPa and 4.074867GPa where H0 is the hardness at infinite depth of indentation and h* is a characteristic depth.
The analytical method using curvature to measure stress and strain in films and substrates is studied. In a-Si film/ silicon substrate specimen, we find the tensile stress and compressive stress in the substrate increases with the increasing film thickness. The stress changes from compressive into tensile and the tensile stress increases linearly with z-axis near interface. We also find that stress in each film decreases with increasing film thickness and the stress will gradually decrease with z-axis thickness. In a-Ge film/ PET substrate, the tensile stress in the substrate increases with the increasing film thickness and if z-axis gradually closes to interface of substrate and film, the tensile stress decreases linearly. We also find that the film stress increases with the increasing film thickness as near the film/substrate interface. But the film stress decreases gradually with increasing z-axis close to substrate free surface.
Reference
1. W. D. Nix, “Elastic and plastic properties of thin films on substrates: nanoindentation techniques”, Journal of Materials Science and Engineering, A234-236, pp.37-44 (1997).
2. D. S. Shen, J. P. Conde, V. Chu, S. Aljishi, Jeffrey Z, Liu and Sigurd, Wagner, “Amorphous silicon-germanium thin-film photodetector array”, IEEE Electron Device Letters, Vol. 13, n 1, pp.5-7 (1992).
3. F. C. Marques, R. G. Lacerda, M. M. de lima Jr. and J. Vilcarromero, “Hard a-C:H films deposited at high deposition rates”, Thin Solid Films, 343-344, pp.222-225 (1999).
4. F. C. Marques and J. Vilcarromero, “Hardness and elastic modulus of carbon-germanium alloys”, Thin Solid Films, 398-399, pp.275-278 (2001).
5.Tarui, Hisaki, Tsuda, Shinya and Nanano Shoichi, “Recent progress of amorphous silicon solar cell applications and systems”, Renewable Energy, Vol. 8, pp.390-395 (1996).
6. E. H. Lee, “Lattice-mismatched elemental and compound semiconductor heterostructure for 2-D and 3-D applications”, The International society for Optical Engineering, Vol. 1362, pp.499-509 (1991).
7. P. Danesh, B. Pantchev and B. Schmidt, “Effect of ion implantation on the structural properties of a-Si:H films”, Vacuum, 69, pp.83-86 (2003).
8. M. Y. Tang and S. L. Kim, “Poly(Ethylene terephthaiate)-solvent interaction: gelation and melting point depression”, Polymer Engineering and Science, 34, pp.1656-1663 (1994).
9. C. Q. Yang, R. R. Bresee, and W. G. Fateley, “Studies of chemically modified poly(ethylene terephthalate) fibers by FTIR Photoaccoustic Spectroscopy”, Applied Spectroscopy, 44, pp.1035-1039 (1990).
10. B. Bhushan, “Mechanics and reliability of flexible magnetic media, 2nd ed. NewYork:Springer (2000).
11. L. B. Freund, “Substrate curvature due to thin film mismatch strain in the nonlinear deformation range”, Journal of Mechanics and Physics of Solids, pp.1159-1161 (2000).
12. M. W. Hyer and D. Cohen, “Residual thermal stress in cross-ply graphite-epoxy tubes”, American Society of mechanical Engineers Division (publication) AD, pp.87-93 (1982).
13. P. A, Flinn, “principles and applications of wafer curvature techniques for stress measurement in thin films”. In Bravman, J. C, Nix, W. D, Barnett, D. M, smith, D. A. (Eds), Thin Films: Stresses and Mechanical Properties (Mater. Res. Soc. Proc. 130, Pittsburgh, PA), pp.41-51 (1989)
14. J. A. Floro, E, Chason, R. D .Twesten, R. Q. Hwang, L. B. Freund, “Real-time stress evolution during SiGe heteroepitaxy-dislocations, islanding, and segregation”, Journal of Electronic Materials 26, pp.969-979 (1997a).
15. G. G. Stoney, “The tension fo metallic films deposited by Electrolysis”, Proc. Phys. Soc. London, 82, pp.172-175 (1909).
16. S. Timoshenko, “Analysis of bi-metal thermostats”, J. Opt. Soc. Am, 11, pp.233-255 (1925).
17. C. H. Hsueh, S. Lee, T. J. Chuang, “An alternative method of solving multiplayer bending problems”, Journal of Applied Mechanics, Vol. 70, pp.151-154 (2003).
18. T. J. Chuang, S. Lee, “Elastic flexure of bilayered beams subject to strain differentials”, J. Mater. Res., Vol. 15, No. 12, pp.2780-2788 (2000).
19. J. Brandrup and E. H. Immergut, Polymer Handbook, Third Edition, Wiley, New York (1989).
20. F. Jansen, “Thermal expansion coefficient of a-Si:H”, J. Appl. Phys, Vol. 20, n 1, pp.477-478 (1988).
21. J. Boussinesq, “Applications des potentials a l’etude de equilibre et du mouvement des solides elastiques”, Gauthier-Villars, Paris (1885).
22. I. N. Sneddon, “The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile”, International Journal of Engineering Science, 3, pp.47-57 (1965).
23. N. A. Stillwell and D. Tabor, “Elastic recovery of conical indentations”, Procedding of the Physical Society, 78, pp.169-179 (1961).
24. J. L. Loubet, J. M. Georges, O. Marchesini and G. Meille, “Vickers indentation curves of magnesium oxide (MgO)”, Journal of Materials Research, 1, pp.601-609 (1986).
25. J. Menčík and M. V. Swain, “Errors associated with depth-sensing microindentation tests”, Journal of Materials Research, Vol. 10, No. 6, pp.1491-1501 (1995).
26. Ranjana Saha and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation”, Acta Materialia, 50, pp.23-38 (2002).
27. Takeshi sawa, Yasushi Akiyama,a) Atsushi Shimamoto,b) and Kohichi Tanakac), “Nanoindentation of a 10 nm thick thin film”, J. Mater. Res., Vol. 14, No. 6, pp.2228-2232 (1999).
28. H. Gao, C. H. Chiu, and J. Lee, “Elastic contact versus indentation modeling of multi-layered materials”, Int. J. Solids Structures 29, pp.2471-2492 (1992).
29. M. V. Swain and E. Weppelmann, in Thin Films: Stresses and Mechanical Properties IV, edited by P. H. Townsend, T .P. Weihs, J. E. Sanchez, Jr., and P. Borgesen (Mater. Rec. Soc. Symp. Proc. 308, Pittsburgh, PA), pp.177-182 (1993).
30. J. H. Jou and L. Hsu, “Analysis of thermal stresses in a multilayer thin film printhead”, Thin Solid Film, Vol. 201, No. 6, pp.253-265 (1991).
31. Z. T. Zhang, “Stress and residual stress distributions in plane strain bending”, Int. J. Mech. Sci, Vol. 40, No. 6, pp.533-543 (1998).