簡易檢索 / 詳目顯示

研究生: 瑞辛藍
Rishi Ranjan Kumar
論文名稱: 二硫化鉬/氧化鋅異質接面奈米複合材料應用於高靈敏度二氧化氮氣體感測器製作
Highly Sensitive NO2 Gas Sensors Based on MoS2-loaded ZnO Heterojunction Nanocomposites
指導教授: 林鶴南
Lin, Heh-Nan
口試委員: 廖建能
Liao, Chien-Neng
吳志明
Wu, Jyh-Ming
許鉦宗
Sheu, Jeng-Tzong
冉曉雯
Zan, Hsiao-Wen
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 120
中文關鍵詞: 6nanocompositesMoS2/ZnOLangmuir adsorptionphotodepositiongas sensingUV-activation mode
外文關鍵詞: 6, 納米複合材料, MoS2/ZnO, 朗繆耳吸附, 光沉積, 氣體感測, 紫外光活化模式
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用簡單製程及低成本材料與創新技術相結合,以提升化學感測器的便利性及功能性,對研究學者而言,一直是個有趣且具實用的課題。本論文敘述應用於二氧化氮 (NO2) 氣體感測器的材料設計、製造和特性分析。氧化鋅 (ZnO) 是一種典型的 n 型半導體,被選作此化學電阻式氣體感測器的基礎材料。透過水熱法生長的氧化鋅奈米柱(nanorods, NRs) 直徑為 100 nm、長度為 2 μm。在濃度為 500 ppb NO2 的情況下,平均響應約為 370%。而在 350 °C 下退火的樣品,其響應為 28%。如此發現初成長的氧化鋅相較退火氧化鋅具有更高的靈敏度,其結果可歸因於存在更多充當氣體吸附位置的氧空缺。
    近年來,使用 MoS2 奈米片作為氣體感測材料已被廣泛報導。在實驗上,我們開發了一種基於液相剝離法所製備的 MoS2 奈米片的 NO2 氣體感測器,在 100 °C 下對 5 ppm NO2 氣體的響應為 330%。其優異的性能是由於在室溫下所產生了硫空缺(未配位的 Mo 原子)所致。通過密度泛函理論(density functional theory, DFT)計算,MoS2-NO2 吸附錯合物的形成佔據主導地位,且NO2 氣體分子對硫空缺誘導的 MoS2 的獲得了更高的吸附能,硫空位 (VS) 會充當單電離受體能階(高於價帶 0.54 eV)。最終,可提出將VS視為具有(0 / 1)帶電狀態之單電子受體的p 型MoS2 奈米片溫度相關感測機制
    當這種 ZnO 與通過不同技術製備的二維 (2D) MoS2 奈米結構結合並形成異質接面時,可以進一步提高感測性能。由於它們增大了 MoS2/ZnO 異質接面處的空乏區,而使材料的表面性質和電子性質發生了顯著地改變。MoS2 奈米片與初成長出的 ZnO 相結合的奈米複合物形成了用於室溫下的高性能NO2 化學電阻式氣體感測器。以表面分析技術,證實了 MoS2 奈米片在ZnO NRs上形成了均勻網絡狀的分佈,在紫外線激發下,奈米複合物感測器在 25 和 2500 ppb NO2 下分別表現出 91% 和 2310% 的顯著響應。吸附/脫附動力學乃是透過朗繆爾(Langmuir)吸附模型來詳細解釋。飽和響應、吸附以及脫附常數分別為 2744%、7.0 × 10–6 ppb–1 s–1 和 3.50 × 10–3 s–1。此感測器的出色性能可歸因於 MoS2 和 ZnO 的協同效應,其影響包括產生豐富的吸附位點以及快速的電荷載子遷移。此外,以方便且高效的低溫光沉積方法,可將MoS2 奈米顆粒修飾在 Cu2O/ZnO 異質接面陣列上。該方法利用了基底材料的還原半反應電位和導帶位置關係。首先選擇合適紫外光波長 (254 nm) 將Cu2O奈米簇以及MoS2 奈米顆粒依次沉積於水熱生長的 ZnO 奈米柱上。45 分鐘光沉積時間的 MoS2 對 500 ppb NO2 具有 890% 的最高響應,並展現了出色的氣體選擇性以及實現了 18.7 ppm–1 的高靈敏度。研究結果表明,一維ZnO奈米柱可以作為改善Cu2O和MoS2分散性的優良模板,此奈米複合材料中存在大量異質結、缺陷和空缺,它們會做為電荷分離和遷移有效的活性位點,讓感測器的性能有顯著提升。


    There has been an increasing interest among researchers to improve the functionality and portability of chemical sensor devices, while utilizing simple and low-cost materials combined with innovative techniques. The research described in this thesis involves the design, fabrication, and characterization of hybrid gas sensors for the analyses of nitrogen dioxide (NO2) gas. Zinc oxide (ZnO), a typical n-type semiconductor has been chosen as the template for the chemoresistive gas sensing. ZnO NRs with a diameter of 100 nm and a length of 2 μm are grown by a hydrothermal method. The average response is around 370% for 500 ppb NO2. The sample is annealed at 350 oC and the response obtained is 28%. It is found that the pristine ZnO has higher sensitivity than the thermally annealed ZnO and the consequence can be attributed to the presence of more oxygen vacancies that act as adsorption sites.
    The use of MoS2 nanosheets as a gas sensing material has been reported extensively in recent years. Experimentally, we developed a NO2 gas sensor based on liquid-exfoliated MoS2 nanosheets with the response of 330% at 100 °C for 5 ppm NO2 gas. The excellent performance is due to the creation of sulfur vacancies (undercoordinated Mo atoms) at room temperature. From density functional theory (DFT) calculations, a dominant MoS2−NO2 adsorption complex is formed and higher adsorption energy of the NO2 gas molecule on sulfur vacancy-induced MoS2 is obtained. The sulfur vacancies (VS) acts as the singly ionized acceptor level (0.54 eV above the valence band). Finally, a detailed temperature-dependent sensing mechanism for p-type MoS2 nanosheets has been proposed considering the VS as a single electron acceptor with the (0/−1) charged states.
    The sensing performance can be further improved when this ZnO are combined with two-dimensional (2D) MoS2 nanostructures prepared by several techniques and form a hetero-junction. These modifications can substantially change the surface properties as well as electronic properties due to their enhancement of the depletion layer at the MoS2/ZnO hetero-interfaces. The MoS2 nanosheets are combined with as-grown ZnO forming a nanocomposite for a high-performance room temperature NO2 chemoresistive gas sensor. The uniform network-like distribution of MoS2 nanosheets on the nanorods is confirmed by various characterization techniques. Under UV-activation, the nanocomposite sensor exhibits remarkable responses of 91% and 2310% at 25 and 2500 ppb NO2, respectively. The adsorption/desorption kinetics has been studied in detail using the Langmuir adsorption model. The saturated response, the adsorption, and the desorption constant are determined to be 2744%, 7.0 × 10–6 ppb−1 s−1, and 3.50 × 10–3 s−1, respectively. The outstanding performance of the sensor can be attributed to the synergetic effects of MoS2 and ZnO including creation of abundant adsorption sites and fast charge carrier migration.
    MoS2 nanoparticles have been successfully deposited on Cu2O/ZnO heterostructure arrays by a convenient and highly efficient in-situ low temperature photodeposition method. This method utilizes the reduction half-reaction potential and conduction band position of the base material. A suitable wavelength of 254 nm is chosen to photo-deposit Cu2O nanoclusters followed by MoS2 nanoparticles on hydrothermally grown ZnO nanorods. MoS2 photodeposited at 45 min has shown the highest response of 890% towards 500 ppb NO2 with an excellent selectivity. An excellent sensitivity of 18.7 ppm–1 has also been achieved for this sample. The results reveal that one-dimensional ZnO nanorods can serve as excellent templates for improving the dispersion of Cu2O and MoS2. The improved performance of the nanocomposite is attributed to the presence of numerous heterojunctions combined with the defects and vacancies which provided active sites for efficient charge separation and migration.

    Abstract (Chinese) i Abstract (English) iii Acknowledgements v Table of Contents vii List of Figures xii List of Tables xvii CHAPTER ONE 1 Introduction 1.1 Introduction 1.2 Motivation 1.3 Objectives of research 1.4 Thesis organization CHAPTER TWO 9 Fundamentals of Chemical Sensor 2.1 Operating Principles and Sensor Analysis 2.2 Classification of Sensors 2.3 Chemical Sensors 2.4 Chemoresistive Gas Sensors 2.5 Sensor Performance Characteristics 2.5.1 Base Line 2.5.2 Response and Sensitivity 2.5.3 Selectivity 2.5.4 Response Time 2.5.5 Recovery Time 2.5.6 Stability 2.5.7 Reproducibility 2.5.8 Drift 2.5.9 Detection Limit 2.5.10 Dynamic Range 2.5.11 Recovery Ratio 2.6 Parameters for Characterization of Sensor Behavior 2.6.1 Receptor Function 2.6.2 Transducer Function 2.6.3 Geometrical Aspect 2.6.4 Grain Size CHAPTER THREE 20 Sensing Mechanism, Surface Chemistry and Transport Phenomenon 3.1 Sensing Mechanism 3.2 Surface Chemistry: Adsorption mechanisms 3.2.1 Physisorption and Chemisorption 3.3 Adsorption isotherms 3.3.1 Langmuir model 3.4 Semiconductor Nanomaterials for Gas Sensing CHAPTER FOUR 27 Experimental Procedure and Characterization Instruments 4.1 Device Fabrication 4.2 Gas Sensing 4.2.1 Gas Sensing System 4.2.2 Gas Sensing Measurement Procedure 4.3 Thin Film Characterization Instruments CHAPTER FIVE 33 Nanostructured Zinc Oxide Sensors 5.1 Properties of ZnO 5.1.1 Material Properties and Crystalline Structure 5.2 Preparation of ZnO Nanorods 5.2.1 Synthesis 5.2.2 Structural and Optical Properties 5.2.3 NO2 Gas Sensing 5.2.4 Adsorption/Desorption Kinetics CHAPTER SIX 41 Synthesis Methods and Gas Sensing Applications of MoS2 6.1 Introduction to Transition-Metal Dichalcogenides (TMDCs) 6.2 Properties of MoS2 6.3 Preparation Methods and Gas Sensing Properties for MoS2: Liquid Exfoliation 6.3.1 Literature review 6.3.2 Gas Sensor Fabrication 6.3.3 MoS2 Nanosheets Characterization 6.3.4 Gas Sensing Properties 6.3.5 Theoretical Insight in Sensing Mechanism 6.3.6 Gas Sensing Mechanism 6.4 Preparation Methods: Photo-deposition method CHAPTER SEVEN 67 MoS2/ZnO Based Nanocomposites for Gas Sensing 7.1 Introduction to Nanocomposites 7.2 MoS2/ZnO Binary Nanocomposites 7.2.1 Literature Review 7.2.2 Synthesis of Nanocomposites 7.2.3 Structural and Optical Properties 7.2.4 Band Diagram Construction 7.2.5 Electrical Properties 7.2.6 NO2 Gas Sensing 7.2.7 Adsorption/Desorption Kinetics 7.2.8 Gas Sensing Mechanism 7.3 MoS2/CuxO/ZnO Ternary Nanocomposites 7.3.1 Literature review 7.3.2 Synthesis of Ternary Nanocomposites 7.3.3 Growth Mechanism 7.3.4 Structural and Optical Properties 7.3.5 NO2 Gas Sensing 7.3.6 Gas Sensing Mechanism CHAPTER EIGHT 103 Conclusions and Outlook 8.1 Summary and Conclusions 8.2 Outlook for Future Work References 106 Appendix A 119 List of Publications 119

    [1] Muller, C. O.; Yu, H.; Zhu, B., Ambient Air Quality in China: The Impact of Particulate and Gaseous Pollutants on IAQ. Procedia Engineering, 2015, 121, 582-589.
    [2] Anenberg, S. C.; Mohegh, A.; Goldberg, D. L.; Kerr, G. H.; Brauer, M.; Burkart, K.; Hystad, P.; Larkin, A.; Wozniak, S.; Lamsal, L., Long-term trends in urban NO2 concentrations and associated paediatric asthma incidence: estimates from global datasets. The Lancet Planetary Health, 2022, 6 (1), e49-e58.
    [3] Fazio, E.; Spadaro, S.; Corsaro, C.; Neri, G.; Leonardi, S. G.; Neri, F.; Lavanya, N.; Sekar, C.; Donato, N.; Neri, G., Metal-Oxide Based Nanomaterials: Synthesis, Characterization and Their Applications in Electrical and Electrochemical Sensors. Sensors, 2021, 21 (7), 2494.
    [4] Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M., A New Detector for Gaseous Components Using Semiconductive Thin Films. Analytical Chemistry, 1962, 34 (11), 1502-1503.
    [5] Shaver, P., Activated tungsten oxide gas detectors. Applied Physics Letters, 1967, 11 (8), 255-257.
    [6] Taguchi, N., Gas-detecting device. 1971, U.S. Patent: 3, 631, 436.
    [7] Neri, G., First fifty years of chemoresistive gas sensors. Chemosensors, 2015, 3 (1), 1-20.
    [8] Wang, S.; Ni, W.; Zhang, L.; Lu, P.; Yang, Y.; Wei, L., Fiber-Based Infrasound Sensing. In Advanced Fiber Sensing Technologies, Wei, L., Ed. Springer Singapore: Singapore, 2020; pp 81-98.
    [9] Rothschild, A.; Komem, Y., The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. Journal of Applied Physics, 2004, 95 (11), 6374-6380.
    [10] Atkins, P.; Atkins, P. W.; de Paula, J., Atkins' Physical Chemistry. Oxford university press: 2014.
    [11] Wang, J.; Guo, X., Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 2020, 258, 127279.
    [12] Sharma, D. K.; Shukla, S.; Sharma, K. K.; Kumar, V., A review on ZnO: Fundamental properties and applications. Materials Today: Proceedings, 2022, 49, 3028-3035.
    [13] Espitia, P. J. P.; Soares, N. d. F. F.; Coimbra, J. S. d. R.; de Andrade, N. J.; Cruz, R. S.; Medeiros, E. A. A., Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food and Bioprocess Technology, 2012, 5 (5), 1447-1464.
    [14] Kumar, R. R.; Murugesan, T.; Chang, T.-W.; Lin, H.-N., Defect controlled adsorption/desorption kinetics of ZnO nanorods for UV-activated NO2 gas sensing at room temperature. Materials Letters, 2021, 287, 129257.
    [15] Ahn, M. W.; Park, K. S.; Heo, J. H.; Park, J. G.; Kim, D. W.; Choi, K. J.; Lee, J. H.; Hong, S. H., Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Applied Physics Letters, 2008, 93 (26), 263103.
    [16] Wang, J.; Shen, Y.; Li, X.; Xia, Y.; Yang, C., Synergistic effects of UV activation and surface oxygen vacancies on the room-temperature NO2 gas sensing performance of ZnO nanowires. Sensors and Actuators B: Chemical, 2019, 298, 126858.
    [17] Zhang, D.; Liu, Z.; Li, C.; Tang, T.; Liu, X.; Han, S.; Lei, B.; Zhou, C., Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices. Nano Letters, 2004, 4 (10), 1919-1924.
    [18] Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C., Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 2014, 8 (2), 1102-1120.
    [19] Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., Single-layer MoS2 transistors. Nature Nanotechnology 2011, 6 (3), 147-150.
    [20] Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature Materials, 2014, 13 (12), 1128-1134.
    [21] Yoon, A.; Lee, Z., Synthesis and properties of two dimensional doped transition metal dichalcogenides. Applied Microscopy, 2017, 47(1), 19-28.
    [22] Frey, G.; Elani, S.; Homyonfer, M.; Feldman, Y.; Tenne, R., Optical-absorption spectra of inorganic fullerenelike MS2 (M= Mo, W). Physical Review B, 1998, 57 (11), 6666.
    [23] Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7 (4), 2898-2926.
    [24] Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146 (9-10), 351-355.
    [25] Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H., Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters 2008, 100 (20), 206803.
    [26] Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V.; Morozov, S.; Geim, A. K., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 2005, 102 (30), 10451-10453.
    [27] Liu, H.; Peide, D. Y., Dual-Gate MOSFET With Atomic-Layer-Deposited MoS2 as Top-Gate Dielectric. IEEE Electron Device Letters, 2012, 33 (4), 546-548.
    [28] He, Z.; Que, W., Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Applied Materials Today, 2016, 3, 23-56.
    [29] Yu, X.; Prévot, M. S.; Sivula, K., Multiflake Thin Film Electronic Devices of Solution Processed 2D MoS2 Enabled by Sonopolymer Assisted Exfoliation and Surface Modification. Chemistry of Materials, 2014, 26 (20), 5892-5899.
    [30] Lee, K.; Kim, H.-Y.; Lotya, M.; Coleman, J. N.; Kim, G.-T.; Duesberg, G. S., Electrical Characteristics of Molybdenum Disulfide Flakes Produced by Liquid Exfoliation. Advanced Materials, 2011, 23 (36), 4178-4182.
    [31] Late, D. J.; Huang, Y.-K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J.; Yan, A.; Charles, D.; Waghmare, U. V.; Dravid, V. P.; Rao, C. N. R., Sensing Behavior of Atomically Thin-Layered MoS2 Transistors. ACS Nano, 2013, 7 (6), 4879-4891.
    [32] Linghu, Y.; Wu, C., 1T′-MoS2, A Promising Candidate for Sensing NOx. The Journal of Physical Chemistry C, 2019, 123 (16), 10339-10345.
    [33] Ganatra, R.; Zhang, Q., Few-Layer MoS2: A Promising Layered Semiconductor. ACS Nano, 2014, 8 (5), 4074-4099.
    [34] Xu, Y.; Zheng, L.; Yang, C.; Zheng, W.; Liu, X.; Zhang, J., Oxygen Vacancies Enabled Porous SnO2 Thin Films for Highly Sensitive Detection of Triethylamine at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12 (18), 20704-20713.
    [35] Li, Z.; Liu, X.; Zhou, M.; Zhang, S.; Cao, S.; Lei, G.; Lou, C.; Zhang, J., Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. Journal of Hazardous Materials, 2021, 415, 125757.
    [36] Liu, B.; Chen, L.; Liu, G.; Abbas, A. N.; Fathi, M.; Zhou, C., High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS2 Transistors. ACS Nano, 2014, 8 (5), 5304-5314.
    [37] Zong, B.; Li, Q.; Chen, X.; Liu, C.; Li, L.; Ruan, J.; Mao, S., Highly Enhanced Gas Sensing Performance Using a 1T/2H Heterophase MoS2 Field-Effect Transistor at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12 (45), 50610-50618.
    [38] Donarelli, M.; Prezioso, S.; Perrozzi, F.; Bisti, F.; Nardone, M.; Giancaterini, L.; Cantalini, C.; Ottaviano, L., Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sensors and Actuators B: Chemical, 2015, 207, 602-613.
    [39] Cho, B.; Hahm, M. G.; Choi, M.; Yoon, J.; Kim, A. R.; Lee, Y.-J.; Park, S.-G.; Kwon, J.-D.; Kim, C. S.; Song, M.; Jeong, Y.; Nam, K.-S.; Lee, S.; Yoo, T. J.; Kang, C. G.; Lee, B. H.; Ko, H. C.; Ajayan, P. M.; Kim, D.-H., Charge-transfer-based Gas Sensing Using Atomic-layer MoS2. Scientific Reports, 2015, 5 (1), 8052.
    [40] O’Neill, A.; Khan, U.; Coleman, J. N., Preparation of High Concentration Dispersions of Exfoliated MoS2 with Increased Flake Size. Chemistry of Materials, 2012, 24 (12), 2414-2421.
    [41] Kumar, R. R.; Habib, M. R.; Khan, A.; Chen, P.-C.; Murugesan, T.; Gupta, S.; Anbalagan, A. k.; Tai, N.-H.; Lee, C.-H.; Lin, H.-N., Sulfur Monovacancies in Liquid-Exfoliated MoS2 Nanosheets for NO2 Gas Sensing. ACS Applied Nano Materials, 2021, 4 (9), 9459-9470.
    [42] Adilbekova, B.; Lin, Y.; Yengel, E.; Faber, H.; Harrison, G.; Firdaus, Y.; El-Labban, A.; Anjum, D. H.; Tung, V.; Anthopoulos, T. D., Liquid phase exfoliation of MoS2 and WS2 in aqueous ammonia and their application in highly efficient organic solar cells. Journal of Materials Chemistry C, 2020, 8 (15), 5259-5264.
    [43] Yanase, T.; Uehara, F.; Naito, I.; Nagahama, T.; Shimada, T., Healing Sulfur Vacancies in Monolayer MoS2 by High-Pressure Sulfur and Selenium Annealing: Implication for High-Performance Transistors. ACS Applied Nano Materials, 2020, 3 (10), 10462-10469.
    [44] Qiu, H.; Xu, T.; Wang, Z.; Ren, W.; Nan, H.; Ni, Z.; Chen, Q.; Yuan, S.; Miao, F.; Song, F.; Long, G.; Shi, Y.; Sun, L.; Wang, J.; Wang, X., Hopping transport through defect-induced localized states in molybdenum disulphide. Nature Communications, 2013, 4 (1), 2642.
    [45] Deroide, B.; Bensimon, Y.; Belougne, P.; Zanchetta, J. V., Lineshapes of ESR signals and the nature of paramagnetic species in amorphous molybdenum sulfides. Journal of Physics and Chemistry of Solids, 1991, 52 (7), 853-857.
    [46] Bensimon, Y.; Belougne, P.; Deroide, B.; Zanchetta, J. V.; Giuntini, J. C.; Henn, F., ESR study of influence of oxygen on molybdenum sulfides. Journal of Non-Crystalline Solids, 1992, 149 (3), 218-228.
    [47] Lv, X.-J.; She, G.-W.; Zhou, S.-X.; Li, Y.-M., Highly efficient electrocatalytic hydrogen production by nickel promoted molybdenum sulfide microspheres catalysts. RSC Advances, 2013, 3 (44), 21231-21236.
    [48] Deokar, G.; Vignaud, D.; Arenal, R.; Louette, P.; Colomer, J. F., Synthesis and characterization of MoS2 nanosheets. Nanotechnology, 2016, 27 (7), 075604.
    [49] Cui, S.; Wen, Z.; Huang, X.; Chang, J.; Chen, J., Stabilizing MoS2 Nanosheets through SnO2 Nanocrystal Decoration for High-Performance Gas Sensing in Air. Small, 2015, 11 (19), 2305-2313.
    [50] Neal, A. T.; Pachter, R.; Mou, S., P-type conduction in two-dimensional MoS2 via oxygen incorporation. Applied Physics Letters 2017, 110 (19), 193103.
    [51] Kumar, R.; Goel, N.; Kumar, M., High performance NO2 sensor using MoS2 nanowires network. Applied Physics Letters 2018, 112 (5), 053502.
    [52] Zhang, Y.; Zeng, W.; Li, Y., Hydrothermal synthesis and controlled growth of hierarchical 3D flower-like MoS2 nanospheres assisted with CTAB and their NO2 gas sensing properties. Applied Surface Science, 2018, 455, 276-282.
    [53] Yu, L.; Guo, F.; Liu, S.; Qi, J.; Yin, M.; Yang, B.; Liu, Z.; Fan, X. H., Hierarchical 3D flower-like MoS2 spheres: Post-thermal treatment in vacuum and their NO2 sensing properties. Materials Letters, 2016, 183, 122-126.
    [54] Li, Y.; Song, Z.; Li, Y.; Chen, S.; Li, S.; Li, Y.; Wang, H.; Wang, Z., Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors. Sensors and Actuators B: Chemical, 2019, 282, 259-267.
    [55] Thang, N. T.; Hong, L. T.; Thoan, N. H.; Hung, C. M.; Van Duy, N.; Van Hieu, N.; Hoa, N. D., Controlled synthesis of ultrathin MoS2 nanoflowers for highly enhanced NO2 sensing at room temperature. RSC Advances, 2020, 10 (22), 12759-12771.
    [56] Yan, W.; Yan, W.; Chen, T.; Xu, J.; Tian, Q.; Ho, D., Size-Tunable Flowerlike MoS2 Nanospheres Combined with Laser-Induced Graphene Electrodes for NO2 Sensing. ACS Applied Nano Materials, 2020, 3 (3), 2545-2553.
    [57] Neetika; Kumar, A.; Chandra, R.; Malik, V. K., MoS2 nanoworm thin films for NO2 gas sensing application. Thin Solid Films, 2021, 725, 138625.
    [58] Hung, C. M.; Vuong, V. A.; Duy, N. V.; An, D. V.; Hieu, N. V.; Kashif, M.; Hoa, N. D., Controlled Growth of Vertically Oriented Trilayer MoS2 Nanoflakes for Room-Temperature NO2 Gas Sensor Applications. Physica Status Solidi (A), 2020, 217 (12), 2000004.
    [59] Li, H.; Huang, M.; Cao, G., Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18 (22), 15110-15117.
    [60] Babar, V.; Sharma, S.; Schwingenschlögl, U., Highly Sensitive Sensing of NO and NO2 Gases by Monolayer C3N. Advanced Theory and Simulations, 2018, 1 (6), 1700008.
    [61] Noh, J.-Y.; Kim, H.; Kim, Y.-S., Stability and electronic structures of native defects in single-layer MoS2. Physical Review B 2014, 89 (20), 205417.
    [62] Clark, W.; Vondjidis, A., An infrared study of the photocatalytic reaction between titanium dioxide and silver nitrate. Journal of Catalysis, 1965, 4 (6), 691-696.
    [63] Wenderich, K.; Mul, G., Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chemical Reviews, 2016, 116 (23), 14587-14619.
    [64] Bag, A.; Lee, N.-E., Gas sensing with heterostructures based on two-dimensional nanostructured materials: a review. Journal of Materials Chemistry C, 2019, 7 (43), 13367-13383.
    [65] Zhou, Y.; Gao, C.; Guo, Y., UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet–ZnO nanowire heterojunctions at room temperature. Journal of Materials Chemistry A 2018, 6 (22), 10286-10296.
    [66] Han, Y.; Huang, D.; Ma, Y.; He, G.; Hu, J.; Zhang, J.; Hu, N.; Su, Y.; Zhou, Z.; Zhang, Y.; Yang, Z., Design of Hetero-Nanostructures on MoS2 Nanosheets To Boost NO2 Room-Temperature Sensing. ACS Applied Materials & Interfaces, 2018, 10 (26), 22640-22649.
    [67] Kumar, R. R.; Murugesan, T.; Dash, A.; Hsu, C.-H.; Gupta, S.; Manikandan, A.; Anbalagan, A. k.; Lee, C.-H.; Tai, N.-H.; Chueh, Y.-L.; Lin, H.-N., Ultrasensitive and light-activated NO2 gas sensor based on networked MoS2/ZnO nanohybrid with adsorption/desorption kinetics study. Applied Surface Science, 2021, 536, 147933.
    [68] de Jong, A. M.; Borg, H. J.; van Ijzendoorn, L. J.; Soudant, V. G. F. M.; de Beer, V. H. J.; van Veen, J. A. R.; Niemantsverdriet, J. W., Sulfidation mechanism by molybdenum catalysts supported on silica/silicon(100) model support studied by surface spectroscopy. The Journal of Physical Chemistry, 1993, 97 (24), 6477-6483.
    [69] Yang, L.; Mukhopadhyay, A.; Jiao, Y.; Hamel, J.; Benamara, M.; Xing, Y.; Zhu, H., Aligned and stable metallic MoS2 on plasma-treated mass transfer channels for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5 (48), 25359-25367.
    [70] Zhao, W.; Ribeiro, R. M.; Toh, M.; Carvalho, A.; Kloc, C.; Castro Neto, A. H.; Eda, G., Origin of Indirect Optical Transitions in Few-Layer MoS2, WS2, and WSe2. Nano Letters, 2013, 13 (11), 5627-5634.
    [71] Ward, B. L.; Hartman, J. D.; Hurt, E. H.; Tracy, K. M.; Davis, R. F.; Nemanich, R. J., Schottky barrier height and electron affinity of titanium on AIN. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures 2000, 18 (4), 2082-2087.
    [72] Choi, S.; Shaolin, Z.; Yang, W., Layer-number-dependent work function of MoS2 nanoflakes. Journal of the Korean Physical Society, 2014, 64 (10), 1550-1555.
    [73] Hussain, B.; Aslam, A.; Khan, T. M.; Creighton, M.; Zohuri, B., Electron Affinity and Bandgap Optimization of Zinc Oxide for Improved Performance of ZnO/Si Heterojunction Solar Cell Using PC1D Simulations. Electronics, 2019, 8 (2), 238.
    [74] Xu, S.; Gao, J.; Wang, L.; Kan, K.; Xie, Y.; Shen, P.; Li, L.; Shi, K., Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NOx at room temperature. Nanoscale, 2015, 7 (35), 14643-14651.
    [75] Lu, W.-C.; Kumar, S. S.; Chen, Y.-C.; Hsu, C.-M.; Lin, H.-N., Au/Cu2O/ZnO ternary nanocomposite for low concentration NO2 gas sensing at room temperature. Materials Letters, 2019, 256, 126657.
    [76] Huang, Y.; Jiao, W.; Chu, Z.; Ding, G.; Yan, M.; Zhong, X.; Wang, R., Ultrasensitive room temperature ppb-level NO2 gas sensors based on SnS2/rGO nanohybrids with P–N transition and optoelectronic visible light enhancement performance. Journal of Materials Chemistry C, 2019, 7 (28), 8616-8625.
    [77] Yue, N.; Weicheng, J.; Rongguo, W.; Guomin, D.; Yifan, H., Hybrid nanostructures combining graphene–MoS2 quantum dots for gas sensing. Journal of Materials Chemistry A 2016, 4 (21), 8198-8203.
    [78] Chen, R.; Wang, J.; Xia, Y.; Xiang, L., Near infrared light enhanced room-temperature NO2 gas sensing by hierarchical ZnO nanorods functionalized with PbS quantum dots. Sensors and Actuators B: Chemical, 2018, 255, 2538-2545.
    [79] Chen, Y.-Z.; Wang, S.-W.; Yang, C.-C.; Chung, C.-H.; Wang, Y.-C.; Huang Chen, S.-W.; Chen, C.-W.; Su, T.-Y.; Lin, H.-N.; Kuo, H.-C.; Chueh, Y.-L., An indoor light-activated 3D cone-shaped MoS2 bilayer-based NO gas sensor with PPb-level detection at room-temperature. Nanoscale 2019, 11 (21), 10410-10419.
    [80] Park, S.; Byoun, Y.; Kang, H.; Song, Y.-J.; Choi, S.-W., ZnO Nanocluster-Functionalized Single-Walled Carbon Nanotubes Synthesized by Microwave Irradiation for Highly Sensitive NO2 Detection at Room Temperature. ACS Omega, 2019, 4 (6), 10677-10686.
    [81] Wang, J.; Deng, J.; Li, Y.; Yuan, H.; Xu, M., ZnO nanocrystal-coated MoS2 nanosheets with enhanced ultraviolet light gas sensitive activity studied by surface photovoltage technique. Ceramics International, 2020, 46 (8, Part A), 11427-11431.
    [82] Li, W.; Zhang, Y.; Long, X.; Cao, J.; Xin, X.; Guan, X.; Peng, J.; Zheng, X., Gas Sensors Based on Mechanically Exfoliated MoS2 Nanosheets for Room-Temperature NO2 Detection. Sensors, 2019, 19 (9), 2123.
    [83] Kumar, R.; Jenjeti, R. N.; Sampath, S., Two-Dimensional, Few-Layer MnPS3 for Selective NO2 Gas Sensing under Ambient Conditions. ACS Sensors 2020, 5(2), 404-411.
    [84] Zhu, L.; Zeng, W., Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and Actuators A: Physical, 2017, 267, 242-261.
    [85] Galstyan, V.; Comini, E.; Baratto, C.; Faglia, G.; Sberveglieri, G., Nanostructured ZnO chemical gas sensors. Ceramics International, 2015, 41 (10), 14239-14244.
    [86] Wu, B.; Lin, Z.; Sheng, M.; Hou, S.; Xu, J., Visible-light activated ZnO/CdSe heterostructure-based gas sensors with low operating temperature. Applied Surface Science, 2016, 360, 652-657.
    [87] Liu, Z.; Yu, L.; Guo, F.; Liu, S.; Qi, L.; Shan, M.; Fan, X., Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated rGO nanosheets. Applied Surface Science, 2017, 423, 721-727.
    [88] Murugesan, T.; Kumar, R. R.; Anbalagan, A. k.; Lee, C.-H.; Lin, H.-N., Interlinked Polyaniline/ZnO Nanorod Composite for Selective NO2 Gas Sensing at Room Temperature. ACS Applied Nano Materials, 2022, 5(4), 4921-4930.
    [89] Zhang, Q.; Xie, G.; Xu, M.; Su, Y.; Tai, H.; Du, H.; Jiang, Y., Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. Sensors and Actuators B: Chemical, 2018, 259, 269-281.
    [90] Walker, J. M.; Akbar, S. A.; Morris, P. A., Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review. Sensors and Actuators B: Chemical, 2019, 286, 624-640.
    [91] Shannon, R. D.; Prewitt, C. T., Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B, 1969, 25 (5), 925-946.
    [92] Alev, O.; Ergün, İ.; Özdemir, O.; Arslan, L. Ç.; Büyükköse, S.; Öztürk, Z. Z., Enhanced ethanol sensing performance of Cu-doped ZnO nanorods. Materials Science in Semiconductor Processing, 2021, 136, 106149.
    [93] Nagarjuna, Y.; Hsiao, Y.-J., CuO/ZnO Heterojunction Nanostructured Sensor Prepared on MEMS Device for Enhanced H2S Gas Detection. Journal of The Electrochemical Society 2021, 168 (6), 067521.
    [94] Qian, X.; Zhang, L.; Lin, Y.; Wang, M.; Wang, X.; Su, W., CuxO modified La2Sn2O7 photocatalyst with enhanced photocatalytic CO2 reduction activity. Applied Surface Science, 2021, 568, 150985.
    [95] Saedy, S.; Hiemstra, N.; Benz, D.; van Bui, H.; Nolan, M.; van Ommen, J. R., Dual promotional effect of CuxO clusters grown with atomic layer deposition on TiO2 for photocatalytic hydrogen production. Catalysis Science & Technology, 2022.
    [96] Vijayakumari, A. M.; Oraon, A. R.; Ahirwar, S.; Kannath, A.; Suja, K.; Basu, P. K., Defect state reinforced microwave-grown CuxO/NiO nanostructured matrix engineered for the development of selective CO2 sensor with integrated micro-heater. Sensors and Actuators B: Chemical, 2021, 345, 130391.
    [97] Maroni, F.; Bruni, P.; Giuli, G.; Brutti, S.; Croce, F., Electrospun Carbon/CuxO Nanocomposite material as Sustainable and High Performance Anode for Lithium‐Ion Batteries. ChemistryOpen, 2019, 8 (6), 781-787.
    [98] Jiang, T.; Xie, T.; Zhang, Y.; Chen, L.; Peng, L.; Li, H.; Wang, D., Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique. Physical Chemistry Chemical Physics, 2010, 12 (47), 15476-15481.
    [99] Xu, D.; Li, X.; Zhang, D., A facile one-pot method to Au–SnO2-graphene ternary hybrid. Materials Research Bulletin, 2014, 59, 77-83.
    [100] Luo, Y.; Zhang, D.; Fan, X., Hydrothermal Fabrication of Ag-Decorated MoSe2/Reduced Graphene Oxide Ternary Hybrid for H₂S Gas Sensing. IEEE Sensors Journal, 2020, 20 (22), 13262-13268.
    [101] Zhang, D.; Jiang, C.; Zhang, Y., Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route. Sensors and Actuators B: Chemical, 2017, 242, 15-24.
    [102] Singh, A. K.; Kumar, P.; Late, D.; Kumar, A.; Patel, S.; Singh, J., 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects. Applied Materials Today, 2018, 13, 242-270.
    [103] Hossain, M. A.; Merzougui, B. A.; Alharbi, F. H.; Tabet, N., Electrochemical deposition of bulk MoS2 thin films for photovoltaic applications. Solar Energy Materials and Solar Cells 2018, 186, 165-174.
    [104] Milazzo, G.; Caroli, S.; Braun, R. D., Tables of standard electrode potentials. Journal of The Electrochemical Society, 1978, 125 (6), 261C.
    [105] Xie, S.; Zhang, Q.; Liu, G.; Wang, Y., Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chemical Communications, 2016, 52 (1), 35-59.
    [106] Jung, S.; Jeon, S.; Yong, K., Fabrication and characterization of flower-like CuO–ZnO heterostructure nanowire arrays by photochemical deposition. Nanotechnology, 2010, 22 (1), 015606.
    [107] Luo, Y.; Li, S.; Ren, Q.; Liu, J.; Xing, L.; Wang, Y.; Yu, Y.; Jia, Z.; Li, J., Facile synthesis of flowerlike Cu2O nanoarchitectures by a solution phase route. Crystal Growth & Design, 2007, 7 (1), 87-92.
    [108] Khan, A., Raman spectroscopic study of the ZnO nanostructures. J Pak Mater Soc, 2010, 4 (1), 5-9.
    [109] Solache-Carranco, H.; Juárez-Díaz, G.; Esparza-García, A.; Briseño-García, M.; Galván-Arellano, M.; Martínez-Juárez, J.; Romero-Paredes, G.; Peña-Sierra, R., Photoluminescence and X-ray diffraction studies on Cu2O. Journal of Luminescence, 2009, 129 (12), 1483-1487.
    [110] Buscema, M.; Steele, G. A.; van der Zant, H. S.; Castellanos-Gomez, A., The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Research, 2014, 7 (4), 561-571.
    [111] Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y.; Dai, H., Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Letters, 2003, 3 (2), 193-198.
    [112] Su, M.; Liang, Z.; Zhao, C.; Liu, P.; Yue, S.; Xie, W., Preparation of High quality Cu2O crystal and its opto-electronic properties. Materials Letters 2016, 170, 80-84.

    QR CODE